

Dragonpay Online Payment

Merchant Payment Switch API

Version 2.22 – May 22, 2025

Table of Contents
Table of Contents...2
1. About this Document..4
2. Intended Audience... 4
3. Change Log...5
4. Introduction.. 6

4.1 What is online bank debit payment?.. 6
4.2 How does online bank debit payment work?..8

5. Payment Switch API... 10
5.1 System Requirements.. 10
5.2 Requesting a Payment..11
5.2.1 Request Parameters.. 12
5.2.2 Response Parameters... 17
5.2.3 Payment Completion Response Parameters... 19
5.3 Additional Support Functions...23

5.3.1 Transaction Status Inquiry.. 23
5.3.1.1 Request Parameters.. 23
5.3.1.2 Response Parameters.. 24
5.3.2 Cancellation of Transaction..25
5.3.2.1 Request Parameters.. 25
5.3.2.2 Response Parameters.. 25
5.3.3 Multiple-Use Virtual Accounts and Lifetime Id Functions.......................... 26
5.3.3.1 Request Parameters for Creation of MUVA or LID.................................26
5.3.3.2 Response Parameters for Creation of MUVA or LID...............................29
5.3.3.3 Request Parameters for Activation/Deactivation of MUVA or LID............ 30
5.3.3.4 Response Parameters for Activation/Deactivation of MUVA or LID.......... 30
5.3.3.5 Generating Static QR for Existing MUVA or LID....................................30
5.3.3.6 Request Parameters for Retrieving MUVA or LID.................................. 30
5.3.3.7 Response Parameters for Retrieving MUVA or LID................................ 31
5.3.3.7 Updating Lifetime Users for MUVA and LID... 31
5.3.3.8 Response parameters for Updating Lifetime Users for MUVA and LID......32
5.3.4 Transaction History Functions.. 33
5.3.4.1 Request for Transaction History...33
5.3.4.2 Response for Transaction History...33
5.3.4.3 Request for History of Successfully Completed Transactions.................. 33
5.3.4.4 Response for History of Successfully Completed Transactions................ 33

5.4 Customization of Payment Selection...34
5.4.1 Simple Control.. 34
5.4.1.1 Filtering Payment Channels.. 34
5.4.1.2 Pre-selecting Payment Channels..35
5.4.2 Advanced Control.. 36
5.4.2.1 Determining Available Payment Channels... 36
5.4.2.1.1 GetAvailableProcessors Request Parameters.....................................37

2

5.4.2.1.2 GetAvailableProcessors Response Parameters...................................37
Appendix 1 – Currency Codes..39
Appendix 2 – Error Codes... 40
Appendix 3 – Status Codes... 41
Appendix 4 – Upgrading to HMAC-SHA256.. 42

Overview... 42
Migration Flow...42
Sample Function written in C#.. 43
FAQS...43

Appendix 5 - GCash Payment Flow..44
Overview... 44
Key Changes...44
Action Needed...44
Code Implementation Guidelines.. 45

3

1. About this Document

This document describes the Application Programming Interface (API) between
Payment Switch (PS) and the Merchant’s e-commerce website. The PS is responsible
for communicating with the financial partner’s (eg. Bank) payment gateway for
payment requests using a separate API. Upon validating the request, it redirects the
end-user to his funding source of choice. The information needed by the PS to
process a merchant payment for a transaction is transmitted using the API described
in this document.

This document provides an overall introduction to the system, including its general
architecture and structure. It then goes into detail on how to actually implement the
system.

If you have any questions please do not hesitate to contact sales@dragonpay.ph.

2. Intended Audience

The intended audience for this document is technical personnel or programmers with
background knowledge of programming and e-commerce. The examples in this
document are written in Microsoft C# .NET. However, the programmer is free to
implement the interfaces using other programming languages as long as they
conform to Web standards such as HTTP GET, Name-Value Pair, and JSON/RESTcalls.

4

mailto:sales@dragonpay.ph

3. Change Log

Version Date Changes
2.00 Sept 9, 2019 Base Version for REST v1 implementation
2.01 Jan 16, 2020 Additional fields for Collect
2.02 Mar 20, 2020 Transaction History retrieval endpoints
2.03 Jun 17, 2020 Added missing Section 5.2.3
2.04 Jul 10, 2020 Added lifetime id activation support
2.05 Jul 14, 2020 Modified transaction history inquiry to use GET param
2.06 May 15, 2021 Added note to use clear text passwords in frontend

application
2.07 Jul 9, 2022 Added PreferredId parameter for 5.3.3.1
2.08 Nov 21, 2022 Added INPY to sample procId in 5.4.1.2
2.09 Jan 11, 2023 Added amount/ccy/procId to 5.2.3; added note on txnid

format for lifetime id’s
2.10 Mar 2, 2023 Added documentation for MUVA vs LID
2.11 Added Bin optional field for MUVA creation
2.12 Jan 27, 2024 Updated email information
2.13 Feb 26, 2024 Added Updating lifetime user for LID and Muva
2.14 Mar 03, 2024 Added RefNo, MobileNo, ProcMsg and Fee on 5.3.1.2

Response Parameters
2.15 March 14, 2024 Added ABQR sample request, note and sample

response.
2.16 May 9, 2024 Added information for generating static QR for

MUVA/LID
2.17 July 15, 2024 Updated Appendices

 Terminology updated- Collection API key (old password)
2.18 Sept 30, 2024 Added information related to HMAC-SHA256 signature
2.19 Nov 27, 2024 Added settledate for the callback
2.20 March 6, 2025 Added new GCash Webflow implementations
2.21 April 7, 2025 Update LID/MUVA parameter description for preferred id
2.22 May 22, 2025 Required details for E-Wallet Merchants: additional notes

added in section 5.2.1.

5

4. Introduction

E-commerce is gaining more and more acceptance by the general public each day.
Its full potential, however, is hampered by the lack of available online payment
options. While credit cards remain to be the most popular online payment option,
most consumers shy away from it for fear of getting their card information
compromised. Online merchants are also very wary of credit cards because of the
high fraud rate. And for those selling high-ticket items, the percentage-based fee
structure of credit cards is not appealing. Furthermore, only a small percentage of
the population has access to credit cards because of credit history requirements.

Online bank debit payment presents a very effective alternative to this dilemma.
Opening a bank account is certainly simpler than opening a credit card account. This
presents a larger potential customer base to online merchants. The online banking
interface is also inherently more secure than the usual credit card interface. This
gives assurance to the customer that the transaction is safe. And because there is
no concept of chargebacks with debit payments, merchants are also assured of
payments for their products or services.

4.1 What is online bank debit payment?

In a typical online banking session, bank customers can perform basic functions such
as balance inquiry, bills payment, checkbook reorder, and funds transfer remotely
from their homes or offices. The bank’s online interface is simply accessed using a
web browser over a secure channel (https).

6

Under this scenario, the bank’s system assumes that it is transacting with a live
person. It responds to the requests sent by the bank customer over the browser.
These requests are made by navigating through the web interface’s menu system
and by filling up on-screen forms.

Online banking systems are normally not designed to work with e-commerce
merchants or online stores which require machine-to-machine communication. They
do not have the capability to accept requests programmatically from 3rd party
websites or applications (ex. Shopping cart systems) for debiting the bank account of
a particular customer. Subsequently, online banking systems also do not have the
capability to communicate with a 3rd party system to inform it if a payment was done
successfully or not.

Because of these limitations, it is currently impossible for online merchants to bill
customers using their bank accounts in an automated, single-flow process.
Merchants normally resort to off-line means such as asking the customer to deposit
to their bank account over-the-counter and fax them the deposit slip as proof of
payment. This makes it impossible to do e-commerce which require real-time
responses (ex. airline ticketing, digital downloads). For merchants with high-volume
transactions, the manual validation of deposit slips is also not a scalable solution.

PS seeks to address the problem by providing a “wrapper” interface to the online
banking system. This will provide 3rd party online store applications with a
programmatic interface to request for payments from the customer’s bank, and for
the bank to provide real-time feedback or confirmation if the payment was successful
or not. In doing so, PS can enable any existing online banking platform to provide e-
commerce functionality without or with very little changes, if any.

7

PS will also perform the role of a traffic cop. It will route the payment request to the
appropriate bank chosen by the customer. It will accept payments from the
customer on behalf of the merchant, and it will settle with the merchants on a
scheduled basis.

4.2 How does online bank debit payment work?

All online transactions generally follow the same pattern.

1. Customer surfs an online store
2. Customer clicks on items that he wants
3. Item is placed in an online shopping cart
4. Customer goes to Checkout
5. Customer is presented with several payment options
6. Customer clicks on the payment option he prefers
7. Payment processing is performed
8. Online shopping is completed

Where the shopping experience generally vary is in step #7. Different payment
options have different process flows. Credit card payments are usually more
straightforward – you enter your card details; click a button to confirm; and it’s
done. Most of the time, the customer does not have to leave the store’s Checkout
page.

With most other payment options (ex. PayPal, BancNet), however, the customer’s
browser is first redirected to the secure website of the payment processor. From
there, he is asked to enter his credentials (ex. PayPal account id and password,
BancNet ATM card number and PIN). When all information is entered correctly and

8

the transaction is confirmed, the customer’s browser is redirected back to the online
store (step #8) where the shopping is completed.

The PS process flow follows the general convention of the other payment options.
From the Checkout page, the customer is redirected to PS and is presented with a
list of banks to choose from.

Customer picks his bank from the list and clicks the button to proceed. PS will then
transfer the request to the bank using the API described in this document. At this
stage, the bank will generally perform the following operations:

1. Prompt for the necessary credentials (online banking id and password)
2. Let the customer choose from a list of available bank accounts (ex.

checking account, savings account)
3. Confirm with the customer if he wants to charge the transaction

against his chosen account. At this stage, some banks may perform
additional authentication (ex. prompting for a transaction password,
retrieving confirmation via SMS or email, random number generator)

When payment processing is completed, the customer is sent back to the PS using the
return API described in this document.

PS keeps track of all payment transaction requests and their statuses. It talks to the
bank systems in real-time, as well as, with the merchant shopping systems. It
performs the role of the traffic cop and ensures all messages are routed to the
appropriate party.

9

C/C++

C/C++

5. Payment Switch API

This section of the document describes the Merchant Payment Switch (PS) API in
detail, covering the various functions used, as well as, codes that can be used to
integrate them.

5.1 System Requirements

In order to integrate with the PS, Merchant must fulfill the following prerequisites:

1. Merchant website/app must be capable of getting the required data from
customers (ex. amount, item description, email)

2. Merchant website/app can send HTTP request data to the PS system
when a customer wishes to pay the Merchant.

3. Merchant website/app must have a Postback URL to accept real-time
confirmation from PS.

Each Merchant is assigned the following:

● merchant id – unique code identifying the Merchant
● collection API key – a unique key assigned to the Merchant for checksum

validation.

To authenticate REST/JSON payment requests, PS uses the industry-standard HTTP
Basic Authentication method wherein the assigned merchant id and collection API key
is Base64-encoded and passed as part of the HTTP request header.

For .NET developers, you can use a code like this to include the basic authentication in
the request header:

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
request.Credentials = new System.Net.NetworkCredential(merchantId, collection
API key);

If you prefer to manually add basic authentication to the headers, the same can be
achieved by doing something like this:

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
var credentials = System.Text.Encoding.UTF8.GetBytes(merchantId + ":" +
collection API key);
string token = System.Convert.ToBase64String(credentials);
request.Headers.Add("Content-Type", "application/json");
request.Headers.Add("Authorization", "Basic " + token);

Note: collection API key should never be hardcoded in the front-end application where
it is viewable in clear text. All API calls should only be made from the merchant’s
backend servers for security.

10

Unset

Unset

Unset

Unset

5.2 Requesting a Payment

The general flow for making a payment request is as follows:

1. Merchant system requests for a payment to be collected from the PS via
JSON/REST, passing all the necessary parameters

2. PS replies with a message containing a status, refno, and url
3. Merchant system performs a browser redirect to the passed url
4. Upon payment completion, PS will call the Merchant system’s postback url

and redirect the browser back to the Merchant system’s return url.

You may use the following URLs as the service entry point for Version 1 (v1)
implementation.

Service Production base URL:

https://gw.dragonpay.ph/api/collect/<version-no>

Service Test base URL:

https://test.dragonpay.ph/api/collect/<version-no>

For merchants migrating from the first generation API, using <version-no> of “v1” will
provide backward compatibility. The url returned will be similar in flow to the original
API. For new integrations, we recommend using <version-no> of “v2”.
Thus, the url to be used would normally be:

Service Production base URL:

https://gw.dragonpay.ph/api/collect/v1

Service Test base URL:

https://test.dragonpay.ph/api/collect/v1

NOTE: For API version 2 “procId” is a required property when creating transactions.

11

5.2.1 Request Parameters

These are the parameters passed by the Merchant via JSON/REST to request for a payment to
be collected. Make sure to set the header Content-Type to application/json.

NOTE: Merchants that provide E-Wallet Services are required to pass the Account
Number and Name in the description field e.g. “0000-000-0000 - Juan Dela Cruz”

Endpoint: <baseurl>/<txnid>/post
Method: POST

NOTE: The txnid must be alphanumeric (dashes are allowed) and must not exceed more
than 40 characters in length.

Parameter Data Type Description
Amount Numeric(12,2) The amount to collect (XXXX.XX)
Currency Char(3) The currency (see Appendix 1)
Description Varchar(128) A brief description of the request
Email Varchar(40) Email address of customer
MobileNo Varchar(20) [OPTIONAL] mobile no of customer
ProcId Varchar(4) [OPTIONAL] preferred payment channel
Param1 Varchar(80) [OPTIONAL] value that will be posted

back to merchant postback/return url
when completed

Param2 Varchar(80) [OPTIONAL] value that will be posted
back to merchant postback/return url
when completed
[REQUIRED for AGGREGATOR setup]

Expiry DateTime [OPTIONAL] payment expiry period (best
effort)

BillingDetails BillingInfo [OPTIONAL] billing details of the
customer needed for credit card
transactions

SenderShippingDetails ShippingInfo [OPTIONAL] shipping details of the
sender needed for COD transactions

RecipientShippingDetails ShippingInfo [OPTIONAL] shipping details of the
recipient needed for COD transactions

IpAddress Varchar(16) [OPTIONAL] IP address of end-user
UserAgent Varchar(256) [OPTIONAL] Browser user agent of end-

user

You may keep the ProcId blank if you want the user to perform the selection on
Dragonpay’s side (recommended). If you wish to pre-select the channel, please refer
to Section 5.4 of this document on advanced controls.

For credit card transactions, the merchant system must pass the BillingDetails field. For
Cash on Delivery (COD) transactions, the merchant system must pass the sender and
recipient shipping addresses.

12

Unset

The BillingInfo structure is as follows:

Parameter Data Type Description
FirstName Varchar(60) First name of customer
LastName Varchar(60) Last name of customer
Address1 Varchar(120) Street address
Address2 Varchar(120) Village, subdivision, etc.
City Varchar(40) City or municipality
State Varchar(40) State or province
Country Varchar(2) 2-char ISO country code (ex. PH, US, CA)
ZipCode Varchar(12) [OPTIONAL] zip code
TelNo Varchar(40) Telephone number of customer
Email Varchar(40) Email address of customer

The ShippingInfo structure is as follows:

At a bare minimum, a sample JSON payment request payload for Metrobankdirect
online can look like:

https://test.dragonpay.ph/api/collect/v2/test20200118001/post

{
"Amount": "100.00",
"Currency": "PHP",
"Description": "Sample transaction",
"Email": "juan.dela.cruz@sampledomain.com",
"ProcId": "MBTC"

}

13

Parameter Data Type Description
FirstName Varchar(60) First name of customer
MiddleName Varchar(60) Middle name of customer
LastName Varchar(60) Last name of customer
Address1 Varchar(120) Street address
Address2 Varchar(120) Village, subdivision, etc.
Barangay Varchar(60) Barangay
City Varchar(40) City or municipality
Province Varchar(40) State or province
Country Varchar(2) 2-char ISO country code (ex. PH, US, CA)
ZipCode Varchar(12) [OPTIONAL] zip code
Landmark Varchar() [OPTIONAL] landmarks or directions to help

courier locate the address
TelNo Varchar(40) Telephone number of customer
Email Varchar(40) Email address of customer

Unset

Unset

Below is a sample JSON payload to request collection with GCash:

https://test.dragonpay.ph/api/collect/v2/test20200118002/post

{
"Amount": "100.00",
"Currency": "PHP",
"Description": "Sample transaction",
"Email": "juan.dela.cruz@sampledomain.com",
"ProcId": "GCSH"

}

Below is a sample JSON payload to request collection with QRPH (ABQR):
https://test.dragonpay.ph/api/collect/v2/test20200118002/post

{
"Amount": "100.00",
"Currency": "PHP",
"Description": "Sample transaction",
"Email": "juan.dela.cruz@sampledomain.com",
"ProcId": "ABQR"

}

14

Unset

Below is a full sample JSON payload to request collection with credit cards:

https://test.dragonpay.ph/api/collect/v2/test20200118004/post

{
"Amount": "100.00",
"Currency": "PHP",
"Description":"Sample Transaction",
"Email": "juan.dela.cruz@sampledomain.com",
"ProcId": "CC",
"Param1": "Test parameter 1",
"Param2": "Test parameter 2",
"BillingDetails": {

"FirstName": "Juan",
"MiddleName": "Dela",
"LastName": "Cruz",
"Address1": "123 Sesame Street",
"Address2": "Childrens Television",
"Workshop", "City": "Marikina",
"Province": "Metro Manila",
"Country": "PH",
"ZipCode": "1800",
"TelNo": "86556820",
"Email": "juan.dela.cruz@sampledomain.com"

},
"IpAddress": "123.12.4.67",
"UserAgent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/48.0.2564.103 Safari/537.36"
}

15

Unset

Below is a full sample JSON payload to request collection with COD + Delivery:

https://test.dragonpay.ph/api/collect/v2/test20200118005/post

{
"Amount": "100.00",
"Currency": "PHP",
"Description": "Sample transaction",
"Email": "juan.dela.cruz@sampledomain.com",
"ProcId": "BAE",
"Param1": "Test parameter 1",
"Param2": "Test parameter 2",
"SenderShippingDetails": {

"FirstName": "Juan",
"MiddleName": "Dela",
"LastName": "Cruz",
"Address1": "170 Salcedo Street",
"Address2": "Legaspi Village",
"Barangay": "San Lorenzo",
"City": "Makati",
"Province": "Metro Manila",
"Country": "PH",
"ZipCode": "1229",
"Landmark": "Near Greenbelt Park",
"TelNo": "79751111",
"Email": "operations@companyabc.com"

},
"RecipientShippingDetails": {

"FirstName": "Juan",
"MiddleName": "Dela",
"LastName": "Cruz",
"Address1": "123 Sesame Street",
"Address2": "Childrens Television Workshop",
"Barangay": "San Roque",
"City": "Marikina",
"Province": "Metro Manila",
"Country": "PH",
"ZipCode": "1800",
"Landmark": "Near Sta Lucia Mall",
"TelNo": "86556820",
"Email": "juan.dela.cruz@sampledomain.com"

},
"IpAddress": "123.12.4.67",
"UserAgent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/48.0.2564.103 Safari/537.36"

}

16

mailto:operations@companyabc.com

5.2.2 Response Parameters

After posting the transaction details via REST, PS replies back with the following JSON
message:

Parameter Data Type Description
RefNo Varchar(10) A unique sequence assigned by PS to this request
Status Char(1) (S)uccessful or (F)ailed payment initiation request.
Message Varchar(128) If status is (F)ailed, this may contain additional

reason as to why it failed.
Url Varchar(256) The url that merchant system should redirect the

browser to.

If Status returned is (S)uccess, Merchant system should then redirect the customer’s
browser to the provided Url parameter. Take note that Status here is not referring to
the collection status of the transaction itself, but just of the payment initiation request.
So a (S)uccess only means that a payment request has been initiated. It does not
mean that the payment has already been collected successfully.

For Version 1 (v1) implementation, the RefNo parameter will return a token and not
the actual Dragonpay refno. You may just send the browser to Url and PS will handle
the rest.

For Version 2 (v2) implementation, the RefNo parameter is the actual unique reference
no of the transaction on the Dragonpay side. If merchant is passing a pre- selected
ProcId in the collect request in conjunction with the GetAvailableProcessors service
discussed further in Section 5.4, they must check if that ProcId has its MustRedirect
flag set or not. If it is set, then browser must be redirected to the Url next. Otherwise,
the Url must be just pointing to a regular instruction page that the merchant’s UI can
hide or display in its desired format.

17

Unset

NOTE: For ABQR, there is an additional parameter in the response, which is
"QRPH". You can utilize this parameter by appending the value of the QRPH
parameter to https://gw.dragonpay.ph/Bank/GenerateQRPHCode.aspx?code= to
retrieve the QR code. This QR code can be used in case you want to customize your
UI to display only the QR code.

Below is the sample JSON response of ProcId=ABQR.

{
"RefNo": "LMRW4THXB4",
"Status": "S",
"Message": "Successfully created refno",
"Url":"https://test.dragonpay.ph/Bank/ProcessAllBank.aspx?procid=A

BQR&refno=LMRW4THXB4&amount=100.00&ccy=PHP&description=Deposit&billerId=
&email=abc%40gmail.com&digest=e982109e45cebb18d76914149ba49fea86b3ffc7&e
xpiry=3%2f14%2f24+01%3a17&merchantid=TEST&txnid=fpOZoc9A26t0m5wiCQ811U12
M1a",

"QRPH":"00020101021128760011ph.ppmi.p2m0111OPDVPHM1XXX031577714800
00000220416529481372466409105030005204601653036085802PH5909Dragonpay6015
City Of
Mandalu62280010ph.allbank0510LMRW4THXB488310012ph.ppmi.qrph0111OPDVPHM1X
XX6304F40B"
}

18

5.2.3 Payment Completion Response Parameters

When payment processing has completed, the PS should redirect back the
customer’s browser to the Merchant’s registered callback URL and pass along the
parameters below.

IMPORTANT Note: Merchants should upgrade to use HMAC-SHA256 signature

Parameter Description
txnid A unique id identifying this specific transaction from the

merchant side
refno A common reference number identifying this specific transaction

from the PS side
status The result of the payment. Refer to Appendix 3 for codes.
message If status is SUCCESS, this should be the PG transaction

reference number. If status is FAILURE, return one of the error
codes described in Appendix 2. If status is PENDING, the
message would be a reference number to complete the funding.

amount The amount processed
ccy The currency of the amount processed
procid The Payment Channel used to process the payment
settledate Datetime of when the end user has paid
digest A sha1 checksum digest of the parameters along with the secret

key.
signature An HMAC-SHA256 digest of the parameters along with a different

secret key. The digest is encoded in hex and in UPPERCASE. This
is a more secure way to verify our callbacks.

PS recognizes two kinds of Callback URLs – one is the HTTP POST Postback URL and
the HTTP GET Return URL. The postback URL is invoked directly by the PS and does
not expect any return value. Because the invocation is directly done by the PS, it is
very difficult to fake. The merchant can perform additional source IP address
validation to ensure it is the PS making the call. The postback URL handler should
return with a simple content- type:text/plain containing only the single line:
result=OK.

The return URL is passed to the customer’s browser via an HTTP redirect. The
merchant normally responds with a visual web page reply informing the customer the
status of the transaction.

It is not necessary for the merchant to implement both callback URLs, although it is
recommended. PS will always invoke the postback URL first before the browser
redirects to the return URL. Thus the ideal process flow is: upon receiving the postback
URL call, the merchant’s system performs the necessary database updates and initiates
whatever back-end process is required. Then when it receives the return URL call, it
counter-checks the status in the database and provides the visual response. If a
merchant does not provide both callback URLs, PS will only invoke the one provided.

19

Unset

C/C++

C/C++

An HTTP GET from PS to either callback URLs may look something like this:

http://www.abcstore.com/Postback.aspx?txnid=1234&refno=5678&status=S&
message=72843747212&digest=a4b3d08462......&signature=ADSADE123Q2....

The digest is computed using the SHA1 algorithm. Below is a sample code showing how
to generate the SHA1 digest using C# .NET:

String message = String.Format("{0}:{1}:{2}:{3}:{4}",
Request["txnid"].ToString(),
Request["refno"].ToString(),

 Request["status"].ToString(),
 Request["message"].ToString(),
 Application["secretkeysha1"].ToString());
String digest = GetSHA1Digest(message);

Then compare against the passed digest:

if (GetSHA1Digest(message) != Request["digest"].ToString()) {
 // Display some error message and abort processing
} else {
 // If status = "SUCCESS", process customer order for shipment
}

20

C/C++

C/C++

Unset

The code sample below shows how to compute the HMAC-SHA256 signature. Take
note that amount is included here!

NOTE: Appendix 4 provides the complete implementation of the
GetHMACSHA256Digest() function.

String message = String.Format("{0}:{1}:{2}:{3}:{4}",
Request["txnid"].ToString(),
Request["refno"].ToString(),

 Request["status"].ToString(),
 Request["message"].ToString(),
 Request["amount"].ToString());
String secretKey = Application["secretkeysha256"].ToString();
String signature = GetHMACSHA256Digest(message, secretKey);

Then compare against the passed signature:

String secretKey = Application["secretkey"].ToString();
String expectedSignature = GetHMACSHA256Digest(message, secretKey);

if (expectedSignature != Request["signature"].ToString()) {
 // Display some error message and abort processing
} else {
 // If status = "SUCCESS", process customer order for shipment
}

In cases wherein the transaction status returned is PENDING, the merchant may
receive an asynchronous call to the postback URL in the future once the funding is
completed. The format will just be similar to the HTTP GET callback described above.
If a postback URL is not defined for the merchant, PS will invoke the return URL
instead. The merchant should take care in checking the status and should only ship
goods or render service when status value has become SUCCESS.

Special note for Lifetime Id’s or Virtual Accounts (VA’s), the dynamically
generated txnid follows the format “<lifetimeid>-yyMMddHHmm” for LID and
“<MUVA>-yyMMddHHmm” for MUVA.

21

Security Enhancement: Upgrading to HMAC-SHA256

To further ensure that our Payment Completion Response / webhook / callback isn’t
falsifiable, we are upgrading from using SHA1 to HMAC-SHA256. We’re doing a
phased rollout so merchants can adhere to the more secure hashing algorithm.
During this slow rollout phase, we’re sending out both the SHA1 digest, and
HMAC-SHA256 signature so nothing will break. We expect merchants to notify us
once they’ve successfully migrated to HMAC-SHA256 so we can disable
SHA1 for them, thus removing that attack vector.

22

5.3 Additional Support Functions
The PS provides some supplementary functions allowing merchants to more tightly
integrate and automate their systems.

5.3.1 Transaction Status Inquiry

The merchant can programmatically inquire the status of a transaction by using this
function.

5.3.1.1 Request Parameters

These are the parameters passed by the Merchant to the PS via JSON/REST request for
a transaction status. The merchant id and collection API key must be passed to the
endpoint using standard HTTP Basic Auth username and password.

Endpoint: <baseurl>/refno/<refno>
Method: GET

Parameter Data Type Description
refno Varchar(20) A unique Dragonpay refno assigned to the

specific transaction from the merchant side

Alternatively, if you do not have the Dragonpay refno, you may use the merchant-
assigned transaction id using this endpoint.

Endpoint: <baseurl>/txnid/<txnid>
Method: GET

Parameter Data Type Description
txnid Varchar(40) A unique id identifying this specific transaction

from the merchant side

23

5.3.1.2 Response Parameters

The endpoint above returns a JSON-formatted record with the following fields:

Parameter Data Type Description
RefNo Varchar(20) A unique sequence assigned by PS to this request
MerchantId Varchar(20) A unique code assigned to Merchant
TxnId Varchar(40) A unique id identifying this specific transaction

from the merchant side
RefDate DateTime Timestamp when transaction was requested
Amount Numeric(12,2) The amount to get from the end-user (XXXX.XX)
Currency Char(3) The currency of the amount (see Appendix 1)
Description Varchar(128) A brief description of what the payment is for
Status Char(1) Transaction status (see Appendix 3)
Email Varchar(40) Email address of customer
MobileNo Varchar(15) Mobile number of customer
ProcId Varchar(4) Payment channel selected
ProcMsg Varchar(180) Messages for transaction specific to procId
SettleDate DateTime Timestamp when transaction was completed
Param1 Varchar(80) [OPTIONAL] value that will be posted back to

merchant url when completed
Param2 Varchar(80) [OPTIONAL] value that will be posted back to

merchant url when completed
Fee Float Fee charged by Dragonpay to Merchant

NOTE: If the transaction cannot be located, an HTTP Status 404 (not found) will be
returned.

24

5.3.2 Cancellation of Transaction

The merchant can programmatically cancel a pending transaction by using this
function.

5.3.2.1 Request Parameters

These are the parameters passed by the Merchant to the PS via REST request for
voiding of a pending transaction.

Endpoint: <baseurl>/void/<txnid>
Method: GET

Parameter Data Type Description
txnid Varchar(40) A unique id identifying this specific transaction

from the merchant side

5.3.2.2 Response Parameters

The service will respond with a single status string:

Parameter Description
Status Returns zero (0) if successful, else a negative number
Message Extra description regarding the cancellation request

If the transaction cannot be located, an HTTP Error Status 404 (not found) will be
returned.

25

Unset

5.3.3 Multiple-Use Virtual Accounts and Lifetime Id Functions

The merchant can programmatically manage Lifetime Id’s (LID) or Multiple-Use
Virtual Accounts (MUVA) by using these functions. LID’s are alphanumeric and are
generally used with non-bank OTC channels. MUVA are 16-digit numbers used with
Instapay and PESONet. For single-use VA payments, use the standard flow (5.2).

NOTE: Before you can use this feature you must coordinate with your Account Manager
so Dragonpay can provide the required BIN number that is required to create MUVA.

5.3.3.1 Request Parameters for Creation of MUVA or LID

These are the parameters passed by the Merchant to the PS via REST request for a
lifetime id.

IMPORTANT NOTE: Dragonpay MUVA is always 16 digits. For 6-digit BINs, a 10-digit
PreferredId is required; for 8-digit BINs, an 8-digit PreferredId is needed. The BIN and
PreferredId together always form a 16-digit MUVA. For Merchant Supplied LID, the
PreferredId must be between 6 and 10 digits.

Endpoint: <baseurl>/lifetimeid/create
Method: POST

Parameter Data Type Description
Prefix Char(2) The LID prefix assigned to the merchant
Bin Char(6) [OPTIONAL] provide the assigned 6-digit BIN

instead of the 2-char LID prefix for MUVA use
Name Varchar(60) Name of the customer assigned to this id
Email Varchar(60) Email of the customer assigned to this id
Remarks Varchar(80) Additional remarks regarding this id
PreferredId Varchar(6) or

Varchar(8) or
Varchar(10)

[REQUIRED for MUVA and Merchants with
Supplied LIDs] Merchant provided unique id
assigned to the customer.

GenerateQR Boolean [OPTIONAL] Returns a QR string relative to the
created MUVA/LID.

Note: This parameter is only available on API v2
for API v1 please see section 5.3.3.5 Generating
Static QR for Existing MUVA or LID

Sample request for regular LID using merchant-assigned prefix with merchant- supplied
6-alphanumeric id. This will return a lifetime id of “TT123456”.

{
"Prefix": "TT",
"Name": "Juan dela Cruz",
"Email": "juan.dela.cruz@sampledomain.com",
"Remarks": "Customer 123456",
"PreferredId": "123456"

}

26

mailto:juan.dela.cruz@gmail.com

Unset

Unset

Unset

Sample request of a MUVA using Dragonpay-assigned BIN 705299 and merchant-
supplied 10-digit id. This will return a MUVA value of “70529912345890”.

{
"Bin": "705299",
"Name": "Juan dela Cruz",
"Email":"juan.dela.cruz@sampledomain.com",
"Remarks": "Customer 123456",
"PreferredId": "1234567890"

}

By default Static QR is only available in API v2. However, merchants using API v1 can use
the endpoint mentioned in section 5.3.3.5 Generating Static QR for Existing MUVA
or LID to generate a Static QR tied to existing LID/MUVA.

{
"Prefix": "TT",
"Name": "Juan dela Cruz",
"Email": "juan.dela.cruz@sampledomain.com",
"Remarks": "Customer 123456",
"GenerateQR": true

}

Sample MUVA request payload that will generate a QR string.

{
"Bin": "705299",
"Name": "Juan dela Cruz",
"Email":"juan.dela.cruz@sampledomain.com",
"Remarks": "Customer 123456",
"PreferredId": "1234567890",
"GenerateQR": true

}

27

mailto:juan.dela.cruz@gmail.com
mailto:juan.dela.cruz@gmail.com
mailto:juan.dela.cruz@gmail.com

5.3.3.2 Response Parameters for Creation of MUVA or LID

For API Version 1, The service will respond with a single lifetime id/VA string:

Parameter Description
LifetimeId/MUVA Returns generated LID or MUVA, or empty string if failed.

For API Version 2 the service will return the following parameters.

Parameter Description
LifetimeId The generated LID, returns null if failed to generate or using

MUVA.
MUVA The generated MUVA, returns null if failed to generate or using

LID.
QRPH String representation of the generated QR. Returns empty if

failed or the GeneratedQR parameter is set to false.

28

5.3.3.3 Request Parameters for Activation/Deactivation of
MUVA or LID

These are the parameters passed by the Merchant to the PS via REST request for a
lifetime id. Replace <verb> with either activate or deactivate.

Endpoint:<baseurl>/lifetimeid/<verb>/<id>
Method: GET

Parameter Data Type Description
Id Varchar(16) The LID or MUVA to activate or deactivate

5.3.3.4 Response Parameters for Activation/Deactivation of
MUVA or LID

The service will respond with an http status 200 if successful else status 404.

5.3.3.5 Generating Static QR for Existing MUVA or LID

Generate a static QRPH tied to the provided existing LID.

NOTE: For merchants who wanted to utilize static QR for existing LIDs. A way for v1
merchants to use static QR.

Endpoint:<baseurl>/lifetimeid/<id>/generate-static-qr
Method: POST

Parameter Data Type Description
Id Varchar(16) The LID or MUVA to generate a static QR for

5.3.3.6 Request Parameters for Retrieving MUVA or LID

These are the parameters passed by the Merchant to the PS via REST request for a
lifetime id.

Endpoint:<baseurl>/lifetimeid/<id>
Method: GET

Parameter Data Type Description
Id Varchar(16) The LID or MUVA to retrieve

29

Unset

5.3.3.7 Response Parameters for Retrieving MUVA or LID

The service will respond with the following record:

Parameter Data Type Description
userId Varchar(12) The assigned LID/MUVA
merchantId Varchar(20) The merchant id who owns the lifetime id
custName Varchar(60) The registered name of the customer using the id
custEmail Varchar(60) The registered email address of the customer

using the id
remarks Varchar(80) Additional remarks regarding the customer using

the id
status Char(1) (A)ctive or (I)nactive
created Timestamp Date and time when the id was created
staticQr Varchar(512) The generated static QR string tied to the

LID/MUVA provided. Returns null if QR is not yet
generated.

5.3.3.7 Updating Lifetime Users for MUVA and LID

These are the parameters passed by the Merchant to the PS via REST request for a
lifetime id and Va number.

Endpoint: <baseurl>/lifetimeid/<LID or VA>
Method: PATCH

Parameter Data Type Description
Lifetime id / VA Varchar(12) The assigned Lifetime id / VA
Name Varchar(60) The registered name of the customer using the

Lifetime id / VA
Email Varchar(60) The registered email address of the customer

using the Lifetime id / VA
remarks Varchar(80) Additional remarks regarding the customer using

the Lifetime id / VA

Sample request for regular LID using merchant-assigned prefix with merchant-
supplied 6-alphanumeric id. This will return a lifetime id of “TT123456”.

{
 "name": "Juan dela Cruz",

"email": "juan.dela.cruz@sampledomain.com,
"remarks": "Customer 123456"

}

30

Unset

Sample request of a MUVA using Dragonpay-assigned BIN 705299 and merchant-
supplied 10-digit id. This will return a MUVA value of “70529912345890”.

{
 "Name": "Juan Dela Cruz",
 "Email": "juan.dela.cruz@sampledomain.com",
 "Remarks": "Customer 123456"
}

5.3.3.8 Response parameters for Updating Lifetime Users for MUVA and LID

The server will respond with an HTTP Code 200 if successful, and no response body will
be thrown, else, HTTP Error (e.g 404, etc.) will be thrown, and a brief message regarding
the error.

Parameter Description
Message Extra description for updating request

31

5.3.4 Transaction History Functions

The merchant can programmatically retrieve a list of transactions

5.3.4.1 Request for Transaction History

To get the list of all transactions between a date/time range via REST, you may call
this endpoint.

Endpoint: <baseurl>/transactions?startdate={start}&enddate={end}
Method: GET

Both {start} and {end} may use the format yyyy-MM-dd to indicate a date range. If
you need to indicate the time as well, use the format yyyy-MM-ddThh:mm:ss. Since
this is an HTTP GET parameter, make sure to url-encode the colons (“:”) to %3A. If
no specific hour is indicated with the {end} parameter, it is assumed to be up to
23:59:59.999 of that date.

5.3.4.2 Response for Transaction History

The system will respond with an array of records containing the details of all
transactions within the period.

5.3.4.3 Request for History of Successfully Completed Transactions

To get the list of all transactions between a date/time range via REST, you may call
this endpoint.

Endpoint:
<baseurl>/transactions/settled?startdate={start}&enddate={end}
Method: GET

See note on 5.3.4.1 for date/time format.

5.3.4.4 Response for History of Successfully Completed Transactions

The system will respond with an array of records containing the details of all
transactions within the period.

32

Unset

5.4 Customization of Payment Selection

There may be instances wherein the merchant would want to filter the payment
channels that they want to appear in Dragonpay’s payment selection page, or they
may want to skip the Dragonpay page altogether and go straight to the payment
details for a specific channel. There is support for these features and this section
discusses them in detail.

There are two general forms of customization:

1. Simple control of what payment options appear in Dragonpay’s dropdown list
2. Moving the payment selection process to the merchant side and calling

Dragonpay in the background

5.4.1 Simple Control
With the simple method, the process flow is still essentially the same – merchants
redirect the page to Dragonpay for the buyer to make the payment selection.
However, merchants can control to a certain degree which options appear in the
payment selection list, or merchants can make a pre-selection to a specific channel.

5.4.1.1 Filtering Payment Channels
Dragonpay payment channels are grouped together by type – ex. Online
banking, Over-the-Counter/ATM, etc. Merchants can programmatically instruct
Dragonpay which grouping to show when the user is redirected to the payment
gateway by using the “mode” parameter.

Mode Value Grouping Type
1 Online Banking
2 Over-the-Counter Banking and ATM
4 Over-the-Counter non-Bank
8 E-Wallets (inc. Bitcoins)
16 (reserved internally)
32 PayPal
64 Credit Cards
128 Mobile (Gcash)
256 International OTC
512 Bancnet
1024 Auto Debit Arrangement (ADA)
2048 Cash on Delivery (COD)
4096 Installments

“Mode” is a bitmask which can be OR-ed to achieve the result intended. The
following example will only show the online banking options:

https://gw.dragonpay.ph/Pay.aspx?merchantid=ABC&txnid=1234&…&mode=1

33

Unset

Merchants who avail of PayPal or GCash from Dragonpay but do not want them to
appear in the dropdown list, may specify a “mode=7” to display only the basic
alternative payments in the dropdown list.

5.4.1.2 Pre-selecting Payment Channels

Dragonpay has basic support to allow merchants to go directly to a payment channel
without having to select it from the dropdown list. The following are sample processor
id’s which can be used to go straight to the selection:

Proc Id Name
BDO BDO Online Banking
CC Credit Cards
CEBL Cebuana Lhuillier
DPAY Dragonpay Prepaid Credits
ECPY ECPay
GCSH Gcash
PYPL PayPal
MLH M. Lhuillier
RDS Robinsons Dept Store
SMR SM Payment Counters
711 7-Eleven (if applicable)
INPY Instapay (if applicable)

Merchants who want to receive Gcash or PayPal payments may put separate radio
buttons at their checkout page to give users the capability to go straight to that
channel without stopping by the Dragonpay payment selection page by passing a
“procid” parameter.

The following example will direct the buyer to our Gcash payment page from the
merchant’s checkout page:

https://gw.dragonpay.ph/Pay.aspx?merchantid=ABC&txnid=1234&…&procid=GCSH

For PayPal and credit card acceptance, Merchant is required to apply for a separate
acquirer’s id with the respective payment gateways. Contact our Sales for assistance.

NOTE: With the recent GCash (GCSH) updates they implemented a new flow for specific
platforms. Please see Appendix 5 - GCash Payment Flow for more details.

34

5.4.2 Advanced Control
If the merchant wishes to keep the payment user experience as close to their
checkout page as possible, Dragonpay provides support to perform this to a certain
extent.

The general process flow is as follows:

1. Call the GetAvailableProcessors web service to retrieve a list of all supported
payment channels.

2. Merchant dynamically render its checkout page depending on the result set of
GetAvailableProcessors.

3. Merchant redirects the browser to the Payment Url passing the selected
processor id (procid) as parameter.

4. When payment is completed, Dragonpay invokes the Merchant’s Postback /
Return URLs.

5.4.2.1 Determining Available Payment Channels

Depending on various factors, some payment channels may not be available at all
times. Merchants who implement the techniques mentioned in the previous section
to perform payment channel selection at their checkout page, and use the procid
parameter to send the user directly to the payment channel instruction, have to be
careful not to send the user to an inactive channel.

Merchants can query Dragonpay for the available payment channels at a particular
point in time by using the REST Web Service GetAvailableProcessors.

Merchants are strongly discouraged from statically listing Dragonpay payment
channels as there are various rules that determine their availability. These include:

1. Some processors are only available on certain days of the week (ex. Not

available on weekends or non-banking days).

2. Some processors are only available between certain times of the day (ex.
Goes down nightly for maintenance).

3. Some processors have limits on the minimum or maximum amount that
can be processed through them.

4. Scheduled or unscheduled system maintenance.

For these reasons, Merchants who want to customize the user experience by moving
the payment selection onto their checkout page have to be aware of all these rules.
Otherwise, customers may encounter problems.

35

5.4.2.1.1 GetAvailableProcessors Request Parameters

To retrieve the list of all processor channels, you can use this:

Endpoint: <baseurl>/processors

To retrieve the list of available processor channels for a particular amount, you can
use this:

Endpoint: <baseurl>/processors/available/<amount>

Parameter Data Type Description
amount Numeric(12,2) The amount of the transaction

If an amount value greater than zero is passed, GetAvailableProcessors will return a
list of channels available for that amount. But if you want to retrieve the full list
regardless of the amount so you can cache it locally and avoid having to calling the
web method for each transaction, you can set amount to a special value of –1000.

5.4.2.1.2 GetAvailableProcessors Response Parameters

The web service will return an array of records in a REST/JSON or XML/SOAP
envelope format. Each record contains the following fields:

Parameter Data Type Description
procId Varchar(4) A unique code assigned to this processor
shortName Varchar(15) A brief name for this processor. Can be used if

UI space is limited.
longName Varchar(40) A longer, more descriptive name of the

processor. Can be used if UI space allows.
logo Varchar(160) A url pointing to the logo of this procid that

Dragonpay uses
currencies Varchar(80) A comma-delimited list of currencies that this

procid can support.
type Integer Bitmask. Refer to Section 5.4.1.1 for various

meanings
status Char(1) Can be (A)ctive or (I)nactive. As of this writing,

GetAvailableProcessors only return (A)ctive
procid’s.

remarks Varchar(320) This string may be displayed by merchant in its
checkout page to give user more details or
descriptions about what this procid is about.

dayOfWeek Char(7) A string mask corresponding to the 7 days of
the week starting from Sunday and ending
Saturday. If an “X” is in the mask position, that
means the procid is available on that day; else,
it is unavailable and should not be displayed.

startTime Char(5) Starting time when this procid is available to
process (in 24-hr “HH:MM” format)

endTime Char(5) Ending time after which this procId is no longer

36

available to process.

minAmount Numeric(12,2) The smallest amount this procid can process.
maxAmount Numeric(12,2) The amount over-and-above which procid is not

allowed to process.
mustRedirect Bool This flag tells the Merchant whether a browser

redirect is mandatory.
surcharge Numeric(12,2) The amount added for payments using this

channel
hasAltRefNo Bool Has a 10-digit alternate refno used when paying

Additional Notes:

1. If dayOfWeek is “0XXXXX0”, for example, that means it is not available on

Sundays and Saturdays, but is available from Monday to Friday.

2. It is strongly recommended that Merchant uses the remarks field to display
tips or additional description when the channel is selected. This field will also
inform the user if there are any surcharges that may be applied for using this
channel.

3. If startTime=endTime, then this procId is available 24-hrs a day. If
endTime is “00:00”, but startTime is not “00:00”, then endTime should be
interpreted as the stroke of midnight.

4. The minAmount and maxAmount fields should be implemented as follows –
if (amount >= minAmount && amount < maxAmount) then proceed with this
channel, else do not show this channel. That is not amount <= maxAmount.

5. It is recommended that the GetAvailableProcessors web service be invoked by
a scheduled cron job every 30 mins to every hour with amount = -1000.
While the field values generally will not change, the status can change during
the day for various reasons. For example, a bank partner may have an
unscheduled downtime. If Merchant does not refresh its internal copy of this
list, it may think the channel is still active whereas it has already been
deactivated temporarily (or permanently) on Dragonpay’s side.

37

Appendix 1 – Currency Codes

Code Description
PHP Philippine Peso
USD US Dollar

38

Appendix 2 – Error Codes

Code Description
000 Success
101 Invalid payment gateway id
102 Incorrect secret key
103 Invalid reference number
104 Unauthorized access
105 Invalid token
106 Currency not supported
107 Transaction canceled
108 Insufficient funds
109 Transaction limit exceeded
110 Error in operation
111 Security Error
112 Invalid parameters
201 Invalid Merchant Id
202 Invalid Merchant Password

39

Appendix 3 – Status Codes

Code Description
S Success
F Failure
P Pending
U Unknown
V Void

40

Appendix 4 – Upgrading to HMAC-SHA256
Overview
We want our move towards using HMAC-SHA256 signature and away from SHA1 digest,
to be as seamless as possible. We encourage merchants to generate a new SHA256
secret key so it’s different from the current SHA1 secret key. However, to reduce
friction, we’re defaulting the SHA256 secret key to your current secret key and use
UTF-8 encoding. Moving forward, we plan to generate SHA256 secret keys encoded in
Hex so to reduce errors due to character encoding.

Once you have finished the build to verify our Payment Completion Response or
callback/webhook using the HMAC-SHA256 signature, you can also start removing the
check for SHA1 digest. Notify us also so we can also stop sending the SHA1 digest as
part of our Payment Completion Response and just send the HMAC-SHA256 signature.

Here’s a few examples of messages, SHA256 secret keys, and signatures. Note that
53517666774C716C397A6A4F32363936 is just SQvfwLql9zjO2696 in hex encoding.

- Using SHA256 secret key encoded in UTF-8 [Online Tool]

- Message:
37f193f8-0494-4356-a2df-868eaef2ed08:P4WNRADT71:S:[000] BOG
Reference No: 20240905104752 #P4WNRADT71:13.56

- Secret Key (UTF-8): SQvfwLql9zjO2696
- Signature:

BCD945971A4002384046D1D75EBC316FE6C294073B3B737577313A690
7B97ACA

- Using SHA256 secret key encoded in Hex [Online Tool]

- Message:
37f193f8-0494-4356-a2df-868eaef2ed08:P4WNRADT71:S:[000] BOG
Reference No: 20240905104752 #P4WNRADT71:13.56

- Secret Key (Hex): 53517666774C716C397A6A4F32363936
- Signature:

BCD945971A4002384046D1D75EBC316FE6C294073B3B737577313A690
7B97ACA

Migration Flow

1. Merchant builds the feature to verify our callback using HMAC-SHA256 signature
2. Merchant test that the signature they’re receiving matches what they’ve computed
3. Merchant updates their software to stop using the SHA1 digest as a verification
4. Merchant notifies devops@dragonpay.ph so we stop sending SHA1 digest to them
5. Merchant tests if they’re successfully migrated to HMAC-SHA256 signature:

meaning they’re able to verify our callbacks AND they’re not receiving the SHA1
digest anymore

41

https://emn178.github.io/online-tools/sha256.html?input=37f193f8-0494-4356-a2df-868eaef2ed08%3AP4WNRADT71%3AS%3A%5B000%5D%20BOG%20Reference%20No%3A%2020240905104752%20%23P4WNRADT71%3A13.56&input_type=utf-8&output_type=hex&hmac_enabled=1&hmac_input_type=utf-8&hmac_key=SQvfwLql9zjO2696
https://emn178.github.io/online-tools/sha256.html?input=37f193f8-0494-4356-a2df-868eaef2ed08%3AP4WNRADT71%3AS%3A%5B000%5D%20BOG%20Reference%20No%3A%2020240905104752%20%23P4WNRADT71%3A13.56&input_type=utf-8&output_type=hex&hmac_enabled=1&hmac_input_type=hex&hmac_key=53517666774C716C397A6A4F32363936
mailto:devops@dragonpay.ph

C/C++

Sample Function written in C#

public static string GetHMACSHA256Digest(string message, string keyInHex)
{
 // Hex Decode the Secure Secret for use in using the HMACSHA256 hasher
 // Hex decoding eliminates this source of error as it is independent
of the character encoding
 // Hex decoding is precise in converting to a byte array and is the
preferred form for representing binary values as hex strings.
 byte[] keyHexDecoded = new byte[key.Length / 2];
 for (int i = 0; i < key.Length / 2; i++)
 {
 keyHexDecoded[i] = (byte)Int32.Parse(key.Substring(i * 2, 2),
System.Globalization.NumberStyles.HexNumber);
 }

 System.Security.Cryptography.HMACSHA256 hmacsha256 = new
System.Security.Cryptography.HMACSHA256(keyHexDecoded);

 byte[] data = System.Text.Encoding.UTF8.GetBytes(message);
 byte[] result = hmacsha256.ComputeHash(data);

 System.Text.StringBuilder sb = new System.Text.StringBuilder();
 for (int i = 0; i < result.Length; i++)
 sb.Append(result[i].ToString("X2"));
 return sb.ToString();
}

FAQS

1. How do we generate a SHA256 secret key? You can email
devops@dragonpay.ph for the meantime while we’re working on adding this to
our Web Portal

2. Why doesn’t our signature match with the expected signature?
a. One point of confusion is the encoding of the secret key. The example

code above, `GetHMACSHA256Digest()` assumes that the key is in hex
so you might need to hex encode before you put into your env variables.

b. There’s also a difference between the SHA1 message and SHA256
message: SHA256 also includes the amount.

c. We pass the signature in UPPER CASE, it’s best that your checks are case
insensitive.

42

mailto:devops@dragonpay.ph

Appendix 5 - GCash Payment Flow
Overview

To enhance user security and provide a seamless online payment experience, GCash has
introduced updates to its payment flow. These changes require users to authenticate
their transactions through the GCash mobile application and implement advanced risk
assessment protocols. The updated payment process involves two new payment methods
that ensure secure and efficient handling of transactions across web-based and
app-based platforms.

Key Changes

1. User Authentication Requirement:
○ All transactions now require users to log into their GCash mobile

application to complete payments.
○ Transactions will be subject to enhanced risk assessment, leveraging

multi-factor authentication methods such as OTP (One-Time Password),
MPIN, and Face Scan.

2. New Payment Options:
○ Redirect Button: Users can click on a Redirect button to open the GCash

app on the same device and proceed with payment.
○ Redirect QR: A dynamic QR code will be generated for each transaction,

which users can scan using the GCash in-app scanner. Upon scanning,
users will be redirected to select from their available payment options.

Action Needed

To ensure a smooth transition and uninterrupted payment functionality, action may be
required based on your platform implementation:

1. Web-Based Platform
● No action is required. The new payment flow will be automatically

supported.
2. App-Based Platform

● Changes required. Implement the necessary code changes in your mobile
application to support the new GCash payment flows.

43

Java

Code Implementation Guidelines

If you operate an app-based store, follow these steps to update your platform:

Android Implementation (WebView - Java)

1. Apply the provided function to your WebView class.
2. Test the integration in the UAT (User Acceptance Testing) environment to verify

compatibility with both old and new payment flows.

// Code Changes for ANDROID:

public boolean shouldOverrideUrlLoading(WebView view, WebResourceRequest
request) {

 String url = request.getUrl().toString();

 //Use gcash: on production and sit environment

 if (url.startsWith("gcash://")) {

 val i = Intent(Intent.ACTION_VIEW);

 i.data = Uri.parse(url);

 startActivity (i);

 return true;

 // Let the WebView handle the URL normally

 } else {

 // Use existing logic

 return false;

 //Allow the WebView in your application to do its thing

 }

}

44

C/C++

iOS Implementation

● Safari WebView: No code changes are required. The behavior will update
automatically once GCash rolls out the changes.

● WebKit WebView (Objective-C & Swift): Implement the provided function in
your WebView navigation handler.

// Code Changes for IOS:
- (void)viewDidLoad {
 self.webView.navigationDelegate = self;
}
- (void)webView:(WKWebView *)webView
decidePolicyForNavigationAction:(WKNavigationAction *)navigationAction
decisionHandler:(void (^)(WKNavigationActionPolicy))decisionHandler {
 NSString *scheme = [webView.URL scheme];
 NSString *query = [webView.URL query];
 NSURL *directUrl;
 if (scheme) {
 if ([scheme isEqualToString:@"gcash://"]){
 // Scheme URL
 directUrl = webView.URL;
 }
 if (directUrl) {
 UIApplication *application = [UIApplication sharedApplication];
 // scheme
 if (@available(iOS 10.0, *)) {
 [application openURL:[NSURL URLWithString:directUrl]
options:@{}
 completionHandler:^(BOOL success) {
 if (success) {
 // do something.
 } }];
 } else {
 [application openURL:[NSURL URLWithString:directUrl]];
 }
 }
 }
 decisionHandler(WKNavigationActionPolicyAllow);
}

45

	Dragonpay Online Payment
	Table of Contents
	1.About this Document
	2.Intended Audience
	3.Change Log
	4.Introduction
	4.1What is online bank debit payment?
	4.2How does online bank debit payment work?

	5.Payment Switch API
	5.1System Requirements
	5.2Requesting a Payment
	5.2.1Request Parameters
	These are the parameters passed by the Merchant via JSON/REST to request for a payment to be collected. Make sure to set the header Content-Type to application/json.
	The BillingInfo structure is as follows:
	https://test.dragonpay.ph/api/collect/v2/test20200118001/post
	https://test.dragonpay.ph/api/collect/v2/test20200118002/post

	5.2.2 Response Parameters
	5.2.3 Payment Completion Response Parameters
	
	Security Enhancement: Upgrading to HMAC-SHA256

	5.3Additional Support Functions
	5.3.1Transaction Status Inquiry
	5.3.1.1Request Parameters
	Endpoint: <baseurl>/refno/<refno> Method: GET

	5.3.1.2Response Parameters
	5.3.2Cancellation of Transaction
	5.3.2.1Request Parameters
	5.3.2.2Response Parameters
	5.3.3Multiple-Use Virtual Accounts and Lifetime Id Functions
	5.3.3.1Request Parameters for Creation of MUVA or LID
	5.3.3.2Response Parameters for Creation of MUVA or LID
	5.3.3.3Request Parameters for Activation/Deactivation of MUVA or LID
	5.3.3.4Response Parameters for Activation/Deactivation of MUVA or LID
	5.3.3.5Generating Static QR for Existing MUVA or LID
	5.3.3.6Request Parameters for Retrieving MUVA or LID
	5.3.3.7Response Parameters for Retrieving MUVA or LID
	
	
	5.3.3.7 Updating Lifetime Users for MUVA and LID
	5.3.3.8 Response parameters for Updating Lifetime Users for MUVA and LID
	5.3.4Transaction History Functions
	5.3.4.1Request for Transaction History
	Endpoint: <baseurl>/transactions?startdate={start}&enddate={end} Method: GET

	5.3.4.2Response for Transaction History
	5.3.4.3Request for History of Successfully Completed Transactions
	Endpoint:

	5.3.4.4Response for History of Successfully Completed Transactions

	5.4Customization of Payment Selection
	5.4.1Simple Control
	5.4.1.1Filtering Payment Channels
	5.4.1.2Pre-selecting Payment Channels
	5.4.2Advanced Control
	5.4.2.1Determining Available Payment Channels
	5.4.2.1.1GetAvailableProcessors Request Parameters
	Endpoint: <baseurl>/processors
	Endpoint: <baseurl>/processors/available/<amount>

	5.4.2.1.2GetAvailableProcessors Response Parameters

	Appendix 1 – Currency Codes
	Appendix 2 – Error Codes
	Appendix 3 – Status Codes
	Appendix 4 – Upgrading to HMAC-SHA256
	Overview
	Migration Flow
	
	Sample Function written in C#
	
	FAQS

	Appendix 5 - GCash Payment Flow
	Overview
	Key Changes
	Action Needed
	1.Web-Based Platform
	2.App-Based Platform

	
	Code Implementation Guidelines
	Android Implementation (WebView - Java)
	
	
	
	iOS Implementation

