

Dragonpay Online Payment

Merchant Payout API

Version 1.12 – 31 Mar 2020

 2

Table of Contents

Table of Contents ... 2
1. About this Document .. 3
2. Intended Audience .. 3
3. Change Log ... 3
4. Introduction ... 4

4.1 How does mass payout work? .. 4
5. Payout API... 5

5.1 System Requirements .. 5
5.2 Message Passing (Merchant -> PO) .. 5

5.2.1 SOAP/XML Web Service Model ... 5
5.2.1.1 Requesting a Simple Payout .. 6
5.2.1.2 Querying Transaction Status ... 8
5.2.1.3 Checking Ledger Balance .. 9
5.2.1.4 Getting Available Payout Channels ... 10
5.2.1.5 Retrieving Payout Transaction Details... 11
5.2.2 REST/JSON Model... 12
5.2.2.1 Requesting a Simple Payout .. 13
5.2.2.2 Querying Transaction Status ... 15
5.2.2.3 Checking Ledger Balance .. 16
5.2.2.4 Getting Available Payout Channels ... 17
5.2.2.5 Retrieving Payout Transaction Details... 18
5.2.2.6 Voiding Payout Transaction ... 19
5.2.2.7 Retrieving Payout Transactions for Date Range 20
5.2.2.8 Retrieving Payout Ledger Transactions for Date Range 21
5.3 Receiving Postback Notice .. 22

Appendix 2 – Error Codes .. 24
Appendix 3 – Payout Processor Codes ... 25
Appendix 4 – Payout Transaction Status Codes .. 26
Appendix 5 – RequestPayoutEx Result Codes ... 27
Appendix 6 – Payout Transaction Type Codes .. 28

 3

1. About this Document

This document describes the Application Programming Interface (API) between the

Dragonpay Payout (PO) System and the Merchant’s e-commerce back-end. The PO

is responsible for performing mass payout to multiple recipients. Upon completing

the request, the merchant’s payout postback url will be invoked. An email summary

will also be generated.

If you have any questions please do not hesitate to contact sales@dragonpay.ph.

2. Intended Audience

The intended audience for this document is technical personnel or programmers with

background knowledge of programming and e-commerce. The examples in this

document are written in Microsoft C# .NET. However, the programmer is free to

implement the interfaces using other programming languages as long as they

conform to Web standards such as HTTP GET, Name-Value Pair, and SOAP/XML Web

Services calls.

3. Change Log

Version Date Changes

0.25 Oct 12, 2015 Removed enrollment module documentation

0.30 Feb 27, 2016 Added return codes for RequestPayoutEx

0.32 Aug 2, 2016 Updated Appendix 3

0.33 Sept 30, 2016 Added email and mobileNo to RequestPayoutEx

0.34 Jan 12, 2017 Added postback url documentation

0.35 Oct 31, 2017 Added Appendix 5

0.50 Jun 1, 2018 Added (H)old status, GetLedgerBalance,

GetTxnDetails; corrected GetTxnStatus

0.60 Aug 1, 2018 Added GetProcessors() documentation

1.00 Dec 29, 2018 Added RequestCashPayout()

1.10 Feb 25, 2019 REST/JSON support added

1.11 Sep 11, 2019 Updated Appendix 3 list

1.12 Mar 31, 2020 Document refresh

 4

4. Introduction

Merchants that need to send payments to multiple recipients are faced with the

challenge of writing hundreds, if not thousands, of checks or manually depositing to

various bank accounts in different banks. This process is very tedious, takes up a lot

of man-hours, and is prone to error.

Mass payout solutions simplify this process by allowing Merchants to just send a list

of recipients and amounts, or programmatically request the payout, and it will handle

everything behind-the-scenes. The recipient can choose their preferred method of

receiving the payment whether through bank transfers, mobile payments, or physical

cash pickup.

4.1 How does mass payout work?

The system generally follows this pattern:

1. Merchant sends the payout details (bank id, account no, name, amount) to

Dragonpay via SOAP or REST

2. Dragonpay handles the payout and notifies Merchant through http postback

or merchant can manually check the progress status through the admin portal

The Dragonpay Payout System will perform the actual payment based on its agreed

cut-off times with the Merchant. It is not carried out in real-time. Merchant can also

query the payout system in real-time to check on the status of a payout request.

 5

5. Payout API

This section of the document describes the Payout (PO) API in detail, covering the

various functions used, as well as, codes that can be used to integrate them.

5.1 System Requirements

In order to integrate with the PO, Merchant must fulfill the following prerequisites:

1. Merchant site must be capable of getting the required data from customer

(ex. Name, address, email).

2. Merchant site can send http request data to PO system to request a payout.

3. Optionally, Merchant site may have a Postback URL to accept real-time

notifications from PO of status changes or rely on email summaries.

Each Merchant is assigned the following:

 merchant id – unique code identifying the Merchant

 password – a unique password for logging in to admin website

 api key – a unique string that is used for API calls

Although this document uses Microsoft .NET conventions, it should be implementable

under other operating environments (ex. Linux, PHP, Perl, Java).

5.2 Message Passing (Merchant -> PO)

This section describes how the Merchant will pass a request to the PO for payout

requests and vice versa. There is currently one integration model available –the

Web Services Model.

5.2.1 SOAP/XML Web Service Model

The Merchant may choose to implement the API using the XML Web Services model.

Under this model, the parameters are exchanged directly between the Organization

back-end system and PO servers through SOAP calls.

You may use the following URL’s as the Web Service entry point.

Web Service Production URL:

https://gw.dragonpay.ph/DragonPayWebService/PayoutService.asmx

Web Service Test URL:

https://test.dragonpay.ph/DragonPayWebService/PayoutService.asmx

 6

5.2.1.1 Requesting a Simple Payout

These are the parameters passed by the Merchant to the PO to request for a simple

payout with no enrollment involved.

Web Method: RequestPayoutEx

Parameter Data Type Description

apiKey Varchar(40) A unique code assigned to Merchant for API

merchantTxnId Varchar(40) Unique txnid on the side of merchant referring

to this request

userName Varchar(30) Account name

amount Numeric(15,2) Amount to pay

currency Char(3) Currency (currently only PHP is supported)

description Varchar(180) Text description as to what this is about

procId Varchar(4) Payout channel selected (see Appendix 3)

procDetail Varchar(40) Account/mobile no of payout channel

runDate Date Date when to execute the payout

email Varchar(80) Email address of payout recipient

mobileNo Varchar(20) Mobile number of payout recipient

The RequestPayoutEx() method will return an integer value of zero (0) if successfully

requested. Merchant has to check the Admin portal to see updates on payout status.

Possible return values are listed in Appendix 5.

 7

There is a specialized version of the RequestPayoutEx web service specifically for

cash pickup channels.

Web Method: RequestCashPayout

Parameter Data Type Description

apiKey Varchar(40) A unique code assigned to Merchant for API

merchantTxnId Varchar(40) Unique txnid on the side of merchant referring

to this request

firstName Varchar(30) First name of recipient

middleName Varchar(30) Middle name of recipient

lastName Varchar(30) Last name of recipient

street1 Varchar(60) Street address of recipient

street2 Varchar(60) Additional street address of recipient (optional)

barangay Varchar(40) Barangay of recipient’s address

city Varchar(20) City of recipient’s address

province Varchar(20) Province of recipient’s address

email Varchar(80) Email address of recipient

mobileNo Varchar(20) Mobile number of recipient

birthDate Date Date of birth of recipient (required for

TrueMoney)

nationality Varchar(20) Nationality of recipient (required for

TrueMoney)

amount Numeric(15,2) Amount to pay

currency Char(3) Currency (currently only PHP is supported)

description Varchar(180) Text description as to what this is about

procId Varchar(4) Cash payout channel selected (see Appendix 3)

runDate Date Date when to execute the payout

The RequestCashPayout() method will return an integer value of zero (0) if

successfully requested. Merchant has to check the Admin portal to see updates on

payout status.

 8

5.2.1.2 Querying Transaction Status

These are the parameters passed by the Merchant to the PO to request for a simple

payout with no enrollment involved.

Web Method: GetTxnStatus

Parameter Data Type Description

apiKey Varchar(40) A unique code assigned to Merchant for API

merchantTxnId Varchar(40) Unique txnid on the side of merchant referring

to this request

The GetTxnStatus() method will respond with a single status string:

Parameter Description

status The status of the payout transaction. Refer to Appendix 4 for

codes.

Aside from the transaction status listed in Appendix 4, GetTxnStatus() may also

return “E” if the apiKey is invalid; or “U” if the merchantTxnId does not exist.

For more details on error codes due to FAILURE, or reference numbers for SUCCESS

or PENDING, please access the web-based administrator page.

 9

5.2.1.3 Checking Ledger Balance

These are the parameters passed by the Merchant to the PO to request for the

available balance from the payout ledger.

Web Method: GetLedgerBalance

Parameter Data Type Description

apiKey Varchar(40) A unique code assigned to Merchant for API

The web method returns a value of type double referring to the amount in Philippine

Peso (PHP).

 10

5.2.1.4 Getting Available Payout Channels

These are the parameters passed by the Merchant to the PO to request for the

available payout channels.

Web Method: GetProcessors

The GetProcessors() method expects no parameters and will respond with an array

of records with the following structure:

Parameter Data Type Description

procId Varchar(4) Payout channel selected (see Appendix 3)

shortName Varchar(15) Text name of the processor

logo Varchar(160) Optional logo

defBillerId Varchar(80) Dragonpay source account (internal use only)

status Char(1) Channel status (Active or Inactive)

merchantFee Numeric(10,2) Fee charged by Dragonpay to Merchant

userFee Numeric(10,2) Fee charged by Dragonpay to recipient

 11

5.2.1.5 Retrieving Payout Transaction Details

These are the parameters passed by the Merchant to the PO to request for the

details of a Payout transaction.

Web Method: GetTxnDetails

Parameter Data Type Description

apiKey Varchar(40) A unique code assigned to Merchant for API

merchantTxnId Varchar(40) Unique txnid on the side of merchant referring

to this request

The GetTxnDetails() method will respond with the following structure:

Parameter Data Type Description

refNo Varchar(40) A unique code assigned to Merchant for API

refDate Date Timestamp of the original payout request

merchantId Varchar(20) Id of the merchant requesting

merchantTxnId Varchar(40) Unique txnid on the side of merchant referring

to this request

amount Numeric(15,2) Amount to pay

currency Char(3) Currency (currently only PHP is supported)

description Varchar(180) Text description as to what this is about

userId Varchar(30) Account name

status Char(1) Transaction status (see Appendix 4)

procId Varchar(4) Payout channel selected (see Appendix 3)

procDetail Varchar(40) Account/mobile no of payout channel

procMsg Varchar(180) Messages for transaction specific to procId

runDate Date Date when to execute the payout

settleDate Date Timestamp when payout was completed

email Varchar(80) Email address of payout recipient

mobileNo Varchar(20) Mobile number of payout recipient

 12

5.2.2 REST/JSON Model

The Merchant may choose to implement the API using the REST/JSON model. Under

this model, the parameters are exchanged directly between the Organization back-

end system and PO servers through standard HTTP GET/POST calls using JSON

format.

You may use the following URL’s as the REST entry point.

REST Production Base URL:

https://gw.dragonpay.ph/api/payout/merchant/

REST Test Base URL:

https://test.dragonpay.ph/api/payout/merchant/

(Note: IP address whitelisting is required to use these web api’s)

Although this document may use Microsoft .NET conventions, it should be

implementable under other operating environments (ex. Linux, PHP, Perl, Java).

Merchant must pass its apiKey through the HTTP header using Authorization Bearer.

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(apiUrl);

request.Method = "GET"; // or "POST"

request.Headers.Add("Authorization", "Bearer " + apiKey);

request.ContentType = "application/json";

 13

5.2.2.1 Requesting a Simple Payout

These are the parameters passed by the Merchant to the PO to request for a simple

payout with no enrollment involved. Merchant must pass the Dragonpay-assigned

merchantid in the url path.

REST endpoint : v1/{merchantid}/post

HTTP method: POST

Parameter Data Type Description

TxnId Varchar(40) Unique txnid on the side of merchant referring

to this request

FirstName Varchar(30) First name of the beneficiary

MiddleName Varchar(30) Middle name of the beneficiary

LastName Varchar(30) Last name of the beneficiary

Amount Numeric(15,2) Amount to pay

Currency Char(3) Currency (currently only PHP is supported)

Description Varchar(180) Text description as to what this is about

ProcId Varchar(4) Payout channel selected (see Appendix 3)

ProcDetail Varchar(40) Account/mobile no of payout channel

RunDate Date Date when to execute the payout

Email Varchar(80) Email address of payout recipient

MobileNo Varchar(20) Mobile number of payout recipient

BirthDate Date Date of birth of beneficiary (optional for bank)

Nationality Varchar(20) Nationality of beneficiary (optional for bank)

Address UserAddress Postal address of beneficiary (optional for bank)

The UserAddress type has the following structure:

Parameter Data Type Description

Street1 Varchar(60) Street address

Street2 Varchar(60) Street address

Barangay Varchar(40) Barangay name

City Varchar(20) City name

Province Varchar(20) Province name (ex. Metro Manila)

Country Char(2) ISO Country code (ex. PH)

The Post method will return an Error 401 if wrong apiKey is provided or the following

structure if a valid apiKey is provided:

Parameter Data Type Description

Code Integer 0 if successful, else error. See Appendix 5.

Message String Payout Reference No if successful, else error

message.

Merchant has to check the Admin portal to see updates on payout status.

 14

Sample JSON body message

{

 "TxnId": "20190225008",

 "FirstName": "Robertson",

 "MiddleName": "Sy",

 "LastName": "Chiang",

 "Amount": "1000",

 "Currency": "PHP",

 "Description": "Testing JSON payout",

 "ProcId": "CEBL",

 "ProcDetail": "dick@dragonpay.ph",

 "RunDate": "2019-02-26",

 "Email": "dick@dragonpay.ph",

 "MobileNo": "09175281679",

 "BirthDate": "1970-11-17",

 "Nationality": "Philippines",

 "Address":

 {

 "Street1": "123 Sesame Street",

 "Street2": "Childrens Television Workshop",

 "Barangay": "Ugong",

 "City" : "Pasig",

 "Province": "Metro Manila",

 "Country": "PH"

 }

}

Sample successful JSON response

{

 "Code": 0,

 "Message": "ABCD1234"

}

Sample failed JSON response

{

 "Code": -2,

 "Message": "Cannot be voided anymore"

}

 15

5.2.2.2 Querying Transaction Status

See Section 5.2.2.5 for retrieving Payout Transaction Details. The Status is returned

as one of the fields.

 16

5.2.2.3 Checking Ledger Balance

These are the parameters passed by the Merchant to the PO to request for the

available balance from the payout ledger. Merchant must pass the Dragonpay-

assigned merchantid in the url path.

REST endpoint : v1/{merchantid}/balance

HTTP method: GET

The web method returns a value of type double referring to the amount in Philippine

Peso (PHP).

 17

5.2.2.4 Getting Available Payout Channels

These are the parameters passed by the Merchant to the PO to request for the

available payout channels.

REST endpoint : v1/processors

HTTP method: GET

The web method expects no parameters and will respond with an array of records

with the following structure in JSON format:

Parameter Data Type Description

procId Varchar(4) Payout channel selected (see Appendix 3)

shortName Varchar(15) Text name of the processor

logo Varchar(160) Optional logo

billerId Varchar(80) Dragonpay source account (internal use only)

status Char(1) Channel status (Active or Inactive)

merchantFee Numeric(10,2) Fee charged by Dragonpay to Merchant

userFee Numeric(10,2) Fee charged by Dragonpay to recipient

 18

5.2.2.5 Retrieving Payout Transaction Details

These are the parameters passed by the Merchant to the PO to request for the

details of a Payout transaction. Merchant must pass the Dragonpay-assigned

merchantid in the url path along with the unique transaction id (TxnId) passed

during the original payout request.

REST endpoint : v1/{merchantid}/{txnid}

HTTP method: GET

The web method will respond with the following structure:

Parameter Data Type Description

refNo Varchar(40) A unique code assigned to Merchant for API

refDate Date Timestamp of the original payout request

merchantId Varchar(20) Id of the merchant requesting

merchantTxnId Varchar(40) Unique txnid on the side of merchant referring

to this request

amount Numeric(15,2) Amount to pay

currency Char(3) Currency (currently only PHP is supported)

description Varchar(180) Text description as to what this is about

userId Varchar(30) Account name

status Char(1) Transaction status (see Appendix 4)

procId Varchar(4) Payout channel selected (see Appendix 3)

procDetail Varchar(40) Account/mobile no of payout channel

procMsg Varchar(180) Messages for transaction specific to procId

runDate Date Date when to execute the payout

settleDate Date Timestamp when payout was completed

email Varchar(80) Email address of payout recipient

mobileNo Varchar(20) Mobile number of payout recipient

 19

5.2.2.6 Voiding Payout Transaction

These are the parameters passed by the Merchant to the PO to request for the

voiding of a pending Payout transaction. Merchant must pass the Dragonpay-

assigned merchantid in the url path along with the unique transaction id (TxnId)

passed during the original payout request.

REST endpoint : v1/{merchantid}/{txnid}/void

HTTP method: GET

The web method will respond with the following structure:

Parameter Data Type Description

Code Integer 0 if successfully voided, else error.

Message String General message

 20

5.2.2.7 Retrieving Payout Transactions for Date Range

These are the parameters passed by the Merchant to the PO to request for the

voiding of a pending Payout transaction. Merchant must pass the Dragonpay-

assigned merchantid in the url path along with the unique transaction id (TxnId)

passed during the original payout request.

REST endpoint : v1/{merchantid}/transactions/{startdate}/{enddate}

HTTP method: GET

(Note: the startdate and enddate parameters would be in the format yyyy-mm-dd)

The web method will respond with an array of records following the transaction detail

structure in 5.2.2.5.

 21

5.2.2.8 Retrieving Payout Ledger Transactions for Date Range

These are the parameters passed by the Merchant to the PO to request for the

voiding of a pending Payout transaction. Merchant must pass the Dragonpay-

assigned merchantid in the url path along with the unique transaction id (TxnId)

passed during the original payout request.

REST endpoint : v1/{merchantid}/ledger/{startdate}/{enddate}

HTTP method: GET

(Note: the startdate and enddate parameters would be in the format yyyy-mm-dd)

The web method will respond with an array of the following structure:

Parameter Data Type Description

merchantId Varchar(20) Id of the merchant requesting

refDate DateTime Timestamp of the ledger entry

txnType Varchar(20) Transaction Type code (see Appendix 6)

description Varchar(180) Text description as to what this entry is about

amount Numeric(15,2) Amount (+ or - depending on type)

balance Numeric(15,2) Running balance after this entry

 22

5.3 Receiving Postback Notice

When payment processing has completed, the Payout System will invoke the

Merchant’s registered postback URL’s via HTTP GET and pass along the parameters

below.

Parameter Description

refNo A common reference number identifying this specific transaction

from the PS side

merchantTxnId A unique id identifying this specific transaction from the

merchant side

status The result of the payment. Refer to Appendix 4 for codes.

message Additional payment processing information

digest A sha1 checksum digest of the parameters along with the

merchant pwd.

An HTTP GET from the Payout System may look something like this:

http://www.abcstore.com/Postback.aspx?refNo=ABCD1234&merchantTxnId=1234&

status=S&message=72843747212&digest=a4b3d08462......

The digest is computed using the SHA1 algorithm. Below is a sample code showing

how to generate the SHA1 digest using C# .NET:

String digest = GetSHA1Digest(String.Format("{0}:{1}:{2}:{3}:{4}",

Request[“merchanttxnid”].ToString(),

Request[“refno”].ToString(),

Request[“status”].ToString(),

Request[“message”].ToString(),

Application[“merchantPwd”].ToString()));

Below is a sample implementation of SHA1 using C# .NET:

public static string GetSHA1Digest(string message)

{

 byte[] data = System.Text.Encoding.ASCII.GetBytes(message);

System.Security.Cryptography.SHA1 sha1 = new

System.Security.Cryptography.SHA1CryptoServiceProvider();

 byte[] result = sha1.ComputeHash(data);

 System.Text.StringBuilder sb = new System.Text.StringBuilder();

 for(int i=0; i<result.Length; i++)

 sb.Append(result[i].ToString("X2"));

 return sb.ToString().ToLower();

}

 23

Appendix 1 – Currency Codes

Code Description

PHP Philippine Peso

USD US Dollar

 24

Appendix 2 – Error Codes

Code Description

000 Success

102 Incorrect secret key

103 Invalid reference number

104 Unauthorized access

106 Currency not supported

107 Transaction cancelled

108 Insufficient funds

109 Transaction limit exceeded

110 Error in operation

111 Invalid parameters

201 Invalid Merchant Id

202 Invalid Merchant Password

 25

Appendix 3 – Payout Processor Codes

Code Description

AUB Asia United Bank CA/SA

BDO Banco de Oro CA/SA

BPI BPI CA/SA

BFB BPI Family Bank

CBC Chinabank CA/SA

EWB EastWest CA/SA

LBP Landbank CA/SA

MBTC Metrobank CA/SA

PNB PNB individual CA/SA

RCBC RCBC CA/SA, RCBC Savings Bank CA/SA, RCBC MyWallet

RSB Robinsons Bank CA/SA

SBC Security Bank CA/SA

UBP Unionbank CA/SA, EON

UCPB UCPB CA/SA

CEBL Cebuana Lhuillier Cash Pick-up

LBC LBC Cash Pick-up

PLWN Palawan Pawnshop Cash Pick-up (reserved)

PRHB PeraHub Cash Pick-up

RCBP RCBC/RCBC Savings Bank Cash Pick-up (reserved)

RDP RD Pawnshop Cash Pickup (reserved)

TRMY TrueMoney Cash Pick-up (reserved)

BITC Coins.ph Wallet (reserved)

GCSH Gcash

SMRT Smart Money (reserved)

MAY Maybank

SBA Sterling Bank of Asia

DBP Development Bank of the Philippines (reserved)

PBCM Philippine Bank of Communications

PSB Philippine Savings Bank

PVB Philippine Veterans Bank

BOC Bank of Commerce

CBCS Chinabank Savings Bank

CTBC Chinatrust

PYMY Smart PayMaya

 26

Appendix 4 – Payout Transaction Status Codes

Code Description

S Successfully completed

F Failed

P Pending

H On hold

G In progress

V Voided

 27

Appendix 5 – RequestPayoutEx Result Codes

Code Description

0 Successfully completed

-1 General error

-2 (reserved)

-3 (reserved)

-4 Unable to create a payout transaction

-5 Invalid payout account details

-6 Cannot accept a pre-dated run date

-7 Amount limited exceeded

-8 Similar transaction id already exists

-9 Server IP access is not allowed

-10 Payout account is blacklisted

-11 Payout account is not enrolled for bank

-12 Invalid API Key

 28

Appendix 6 – Payout Transaction Type Codes

Code Description

A Adjusting Entry

P Payout

T Top-up

F Service Fee

