

Dragonpay Online Payment

Merchant Payment Switch API

Version 1.04 – Jun 20, 2019

 2

Table of Contents

Table of Contents ... 2
1. About this Document .. 3
2. Intended Audience .. 3
3. Change Log ... 4
4. Introduction ... 5

4.1 What is online bank debit payment? ... 5
4.2 How does online bank debit payment work? .. 7

5. Payment Switch API .. 9
5.1 System Requirements .. 9
5.2 Message Passing (Merchant ->PS and PS->Merchant) 9

5.2.1 Name-Value Pair Model ... 9
5.2.1.1 Request Parameters ... 10
5.2.1.2 Response Parameters ... 11
5.2.2 SOAP/XML Web Service Model ... 13
5.2.2.1 Request Parameters ... 13
5.2.2.2 Response Parameters ... 14

5.3 Additional Support Functions ... 15
5.3.1 Transaction Status Inquiry ... 15
5.3.1.1 Request Parameters using Name-Value Pair 15
5.3.1.2 Response Parameters using Name-Value Pair 15
5.3.1.3 Request Parameters using XML Web Service 16
5.3.1.4 Response Parameters using XML Web Service 16
5.3.1.5 Request Parameters using JSON/REST ... 17
5.3.1.6 Response Parameters using JSON/REST ... 17
5.3.2 Cancellation of Transaction .. 18
5.3.2.1 Request Parameters using Name-Value Pair 18
5.3.2.2 Response Parameters using Name-Value Pair 18
5.3.2.3 Request Parameters using XML Web Service 19
5.3.2.4 Response Parameters using XML Web Service 19
5.3.3 Sending of Billing Information .. 20
5.3.3.1 Request Parameters using XML Web Service 20
5.3.3.2 Response Parameters using XML Web Service 20
5.3.4 Determining the Assigned Dragonpay Reference No 21
5.3.4.1 Request Parameters using XML Web Service 21
5.3.4.2 Response Parameters using XML Web Service 21

5.4 Customization of Payment Selection ... 22
5.4.1 Simple Control ... 22
5.4.1.1 Filtering Payment Channels ... 22
5.4.1.2 Pre-selecting Payment Channels .. 23
5.4.2 Advanced Control ... 24
5.4.2.1 Determining Available Payment Channels ... 24
5.4.2.1.1 Request Parameters .. 25
5.4.2.1.2 Response Parameters .. 25
5.4.2.2 Creating a Transaction and Retrieving the Instruction 27

Appendix 1 – Currency Codes .. 29
Appendix 2 – Error Codes .. 30
Appendix 3 – Status Codes .. 31

 3

1. About this Document

This document describes the Application Programming Interface (API) between

Payment Switch (PS) and the Merchant’s e-commerce website. The PS is responsible

for communicating with the financial partner’s (eg. Bank) payment gateway for

payment requests using a separate API. Upon validating the request, it redirects the

end-user to his funding source of choice. The information needed by the PS to

process a merchant payment for a transaction is transmitted using the API described

in this document.

This document provides an overall introduction to the system, including its general

architecture and structure. It then goes into detail on how to actually implement the

system.

If you have any questions please do not hesitate to contact sales@dragonpay.ph.

2. Intended Audience

The intended audience for this document is technical personnel or programmers with

background knowledge of programming and e-commerce. The examples in this

document are written in Microsoft C# .NET. However, the programmer is free to

implement the interfaces using other programming languages as long as they

conform to Web standards such as HTTP GET, Name-Value Pair, SOAP/XML Web

Services and JSON/RESTcalls.

 4

3. Change Log

Version Date Changes

0.10 May 25, 2010 Base Version

0.11 June 28, 2010 Added email as required parameter

0.12 Aug 9, 2010 Changed merchant txnid to varchar(40)

 Updated URL’s to api.dragonpay.ph

0.13 Nov 21, 2012 Added support for optional ‘param1’ and ‘param2’

 Documented MerchantRequest.aspx

 Added SendBillingInfo web method

0.14 Dec 9, 2012 Changed server name from ‘api’ to ‘secure’

0.15 Jan 25, 2013 Corrected 2nd parameter of SendBillingInfo

0.16 May 28, 2014 Changed live server from ‘secure’ to ‘gw’

 Added Section 5.3.4

0.17 Sept 2, 2014 Added procid list in 5.3.4.2

0.18 Mar 23, 2015 Included CAD in Currency list

 Changed live web service from ‘secure’ to ‘gw’

0.19 Sept 2, 2015 Updated proc list in 5.3.4.2

0.20 Nov 8, 2015 Added section 5.3.4.3

1.00 Jul 1, 2016 Added section 5.4

1.01 Nov 9, 2017 Updated 5.4.2.1.2

1.02 May 15, 2018 Added HTTP_X_USERIP and https for test server

1.03 Mar 30, 2019 Added transaction status inquiry using JSON/REST

1.04 Jun 20, 2019 Added procid=BAYD requirement in page 23

 5

4. Introduction

E-commerce is gaining more and more acceptance by the general public each day.

Its full potential, however, is hampered by the lack of available online payment

options. While credit card remains to be the most popular online payment option,

most consumers shy away from it for fear of getting their card information

compromised. Online merchants are also very wary of credit cards because of high

fraud rate. And for those selling high-ticket items, the percentage-based fee

structure of credit cards is not appealing. Furthermore, only a small percentage of

the population has access to credit cards because of credit history requirements.

Online bank debit payment presents a very effective alternative to this dilemma.

Opening a bank account is certainly simpler than opening a credit card account. This

presents a larger potential customer base to online merchants. The online banking

interface is also inherently more secure than the usual credit card interface. This

gives assurance to the customer that the transaction is safe. And because there is

no concept of chargebacks with debit payments, merchants are also assured of

payments for their products or services.

4.1 What is online bank debit payment?

In a typical online banking session, bank customers can perform basic functions such

as balance inquiry, bills payment, checkbook reorder, and funds transfer remotely

from their homes or offices. The bank’s online interface is simply accessed using a

web browser over a secure channel (https).

Traditional E-Banking

Balance Inquiry,

Bills Payment,

Etc.

 6

Under this scenario, the bank’s system assumes that it is transacting with a live

person. It responds to the requests sent by the bank customer over the browser.

These requests are made by navigating through the web interface’s menu system

and by filling up on-screen forms.

Online banking systems are normally not designed to work with e-commerce

merchants or online stores which require machine-to-machine communication. They

do not have the capability to accept requests programmatically from 3rd party

websites or applications (ex. Shopping cart systems) for debiting the bank account of

a particular customer. Subsequently, online banking systems also do not have the

capability to communicate with a 3rd party system to inform it if a payment was done

successfully or not.

Because of these limitations, it is currently impossible for online merchants to bill

customers using their bank accounts in an automated, single-flow process.

Merchants normally resort to off-line means such as asking the customer to deposit

to their bank account over-the-counter and fax them the deposit slip as proof of

payment. This makes it impossible to do e-commerce which require real-time

responses (ex. airline ticketing, digital downloads). For merchants with high-volume

transactions, the manual validation of deposit slips is also not a scalable solution.

PS seeks to address the problem by providing a “wrapper” interface to the online

banking system. This will provide 3rd party online store applications with a

programmatic interface to request for payments from the customer’s bank, and for

the bank to provide real-time feedback or confirmation if the payment was successful

or not. In doing so, PS can enable any existing online banking platform to provide e-

commerce functionality without or with very little changes, if any.

E-Commerce Enabled

Real-time

payment

confirmation

Online

shopping

Web

payment

request

E-Banking

login

credentials
E-Commerce Wrapper

 7

PS will also perform the role of a traffic cop. It will route the payment request to the

appropriate bank chosen by the customer. It will accept payments from the

customer in behalf of the merchant, and it will settle with the merchants on a

scheduled basis.

E-C

Multi-Bank/Merchant Model

Switch

Bank #1 Bank #2 Bank #3

Merchant #1 Merchant #2 Merchant #3

Request for bank payment

E-banking login credential

Shop

E-Commerce Wrapper E-Commerce Wrapper E-Commerce Wrapper

4.2 How does online bank debit payment work?

All online transactions generally follow the same pattern.

1. Customer surfs an online store

2. Customer clicks on items that he wants

3. Item is placed in an online shopping cart

4. Customer goes to Checkout

5. Customer is presented with several payment options

6. Customer clicks on the payment option he prefers

7. Payment processing is performed

8. Online shopping is completed

Where the shopping experience generally vary is in step #7. Different payment

options have different process flows. Credit card payments are usually more

straightforward – you enter your card details; click a button to confirm; and it’s

done. Most of the time, the customer does not have to leave the store’s Checkout

page.

With most other payment options (ex. PayPal, BancNet), however, the customer’s

browser is first redirected to the secure website of the payment processor. From

there, he is asked to enter his credentials (ex. PayPal account id and password,

BancNet ATM card number and PIN). When all information is entered correctly and

 8

the transaction is confirmed, the customer’s browser is redirected back to the online

store (step #8) where the shopping is completed.

The PS process flow follows general convention of the other payment options. From

the Checkout page, the customer is redirected to PS and is presented with a list of

banks to choose from.

Switch Visual Interface

Customer picks his bank from the list and clicks the button to proceed. PS will then

transfer the request to the bank using the API described in this document. At this

stage, the bank will generally perform the following operations:

1. Prompt for the necessary credentials (online banking id and password)

2. Let the customer choose from a list of available bank accounts (ex. checking

account, savings account)

3. Confirm with customer if he wants to charge the transaction against his

chosen account. At this stage, some banks may perform additional

authentication (ex. prompting for a transaction password, retrieving

confirmation via SMS or email, random number generator)

When payment processing is completed, customer is sent back to the PS using the

return API described in this document.

PS keeps track of all payment transaction requests and their statuses. It talks to the

bank systems in real-time, as well as, with the merchant shopping systems. It

performs the role of the traffic cop and ensures all messages are routed to the

appropriate party.

 9

5. Payment Switch API

This section of the document describes the Merchant Payment Switch (PS) API in

detail, covering the various functions used, as well as, codes that can be used to

integrate them.

5.1 System Requirements

In order to integrate with the PS, Merchant must fulfill the following prerequisites:

1. Merchant site must be capable of getting the required data from customer

(ex. amount, item description, email)

2. Merchant site can send http request data to PS system when a customer

wishes to pay the Merchant with his bank account.

3. Merchant site must have a Postback URL to accept real-time confirmation

from PS.

Each Merchant is assigned the following:

 merchant id – unique code identifying the Merchant

 secret key – a unique password assigned to Merchant for checksum validation

Production Payment URL:

https://gw.dragonpay.ph/Pay.aspx

Test Payment URL:

https://test.dragonpay.ph/Pay.aspx

Although this document uses Microsoft .NET conventions, it should be implementable

under other operating environments (ex. Linux, PHP, Perl, Java). (Note that since

this is an alpha documentation, the Postback URL’s may change in the future.)

5.2 Message Passing (Merchant ->PS and PS->Merchant)

This section describes how the merchant will pass a request to the PS system for

payment processing and vice versa. There are currently two integration models

available – the Name-Value Pair Model and the Web Services Model.

5.2.1 Name-Value Pair Model

Under the Name-Value Pair Model, Merchant sends the request parameters using

HTTP GET with a browser redirect. The PS system only needs to read and parse the

GET Query String to extract all the necessary information.

 10

The PS system can check the authenticity of the request by two means:

1. It can check the URL or IP address of the HTTP Referer and make sure it

belongs to the Merchant.

2. It can use its secret key to compute for the message digest based on the

parameters passed and compare it against the passed digest. If the

computed digest does not match, then it should reject the transaction as the

parameters have most likely been compromised.

5.2.1.1 Request Parameters

These are the parameters passed by the Merchant to the PS via name-value pairs to request
for a payment.

Parameter Data Type Description

merchantid Varchar(20) A unique code assigned to Merchant

txnid Varchar(40) A unique id identifying this specific transaction

from the merchant side

amount Numeric(12,2) The amount to get from the end-user (XXXX.XX)

ccy Char(3) The currency of the amount (see Appendix 1)

description Varchar(128) A brief description of what the payment is for

email Varchar(40) email address of customer

digest Char(40) A sha1 checksum digest of all the parameters

along with the secret key.

param1 Varchar(80) [OPTIONAL] value that will be posted back to

merchant url when completed

param2 Varchar(80) [OPTIONAL] value that will be posted back to

merchant url when completed

An HTTP GET to PS may look something like this:

https://gw.dragonpay.ph/Pay.aspx?merchantid=ABC&txnid=12345678&amount=1000.00&

ccy=PHP&description=Box+of+Chocolates&digest=a4b3d08462......

The digest is computed using the SHA1 algorithm. Below is a sample code showing

how to generate SHA1 using C# .NET:

public static string GetSHA1Digest(string message)

{

 byte[] data = System.Text.Encoding.ASCII.GetBytes(message);

System.Security.Cryptography.SHA1 sha1 = new

System.Security.Cryptography.SHA1CryptoServiceProvider();

 byte[] result = sha1.ComputeHash(data);

 System.Text.StringBuilder sb = new System.Text.StringBuilder();

 for(int i=0; i<result.Length; i++)

 sb.Append(result[i].ToString("X2"));

 return sb.ToString().ToLower();

}

 11

The message string is built by just concatenating all the required parameters with

the assigned secret key and using the colon symbol for delimiter.

string message = String.Format("{0}:{1}:{2}:{3}:{4}:{5}:{6}",

merchantId,

txnId,

amount.ToString("#0.00"),

currency,

description,

email,

Application["secretkey"].ToString());

String digest = GetSHA1Digest(message);

String redirectString =

String.Format("{0}?merchantid={1}&txnid={2}&amount={3}&ccy={4}" +

 "description={5}&email={6}&digest={7}",

 paymentSwitchUrl,

 merchantId,

 txnId,

 amount.ToString("#0.00"),

 currency,

 Server.UrlEncode(description),

 Server.UrlEncode(email),

 digest);

// send browser to Payment Switch

Response.Redirect(redirectString, true);

5.2.1.2 Response Parameters

When payment processing has completed, the PS should redirect back the

customer’s browser to the Merchant’s registered callback URL’s and pass along the

parameters below.

Parameter Description

txnid A unique id identifying this specific transaction from the

merchant side

refno A common reference number identifying this specific transaction

from the PS side

status The result of the payment. Refer to Appendix 3 for codes.

message If status is SUCCESS, this should be the PG transaction

reference number. If status is FAILURE, return one of the error

codes described in Appendix 2. If status is PENDING, the

message would be a reference number to complete the funding.

digest A sha1 checksum digest of the parameters along with the secret

key.

PS recognizes two kinds of callback URL’s – the postback URL and the return URL.

The postback URL is invoked directly by the PS and does not expect any return

 12

value. Because the invocation is directly done by the PS, it is very difficult to fake.

The merchant can perform additional source IP address validation to ensure it is the

PS making the call. The postback URL handler should return with a simple content-

type:text/plain containing only the single line: result=OK.

The return URL is passed to the customer’s browser via an HTTP redirect. The

merchant normally responds with a visual web page reply informing the customer

the status of the transaction.

It is not necessary for the merchant to implement both callback URL’s, although it is

recommended. PS will always invoke the postback URL first before the browser

redirect to the return URL. Thus, the ideal process flow is: upon receiving the

postback URL call, the merchant’s system performs the necessary database updates

and initiate whatever back-end process is required. Then when it receives the return

URL call, it counter-checks the status in the database and provides the visual

response. If merchant does not provide both callback URL’s, PS will only invoke the

one provided.

An HTTP GET from PS to either callback URL’s may look something like this:

http://www.abcstore.com/Postback.aspx?txnid=1234&refno=5678&status=S&

message=72843747212&digest=a4b3d08462......

The digest is computed using the SHA1 algorithm. Below is a sample code showing

how to generate the SHA1 digest using C# .NET:

String digest = GetSHA1Digest(String.Format("{0}:{1}:{2}:{3}:{4}",

Request[“txnid”].ToString(),

Request[“refno”].ToString(),

Request[“status”].ToString(),

Request[“message”].ToString(),

Application[“secretkey”].ToString()));

Then compare against the passed digest:

if (GetSHA1Digest(message) != Request[“digest”].ToString())

{

 // display some error message and abort processing

}

else

{

 // if status = ‘SUCCESS’, process customer order for shipment

}

In cases wherein the transaction status returned is PENDING, the merchant may

receive an asynchronous call to the postback URL in the future once the funding is

completed. The format will just be similar to the HTTP GET callback described

above. If a postback URL is not defined for the merchant, PS will invoke the return

URL instead. The merchant should take care in checking the status and should only

ship goods or render service when status value has become SUCCESS.

 13

5.2.2 SOAP/XML Web Service Model

For greater security, the Merchant may choose to implement the API using the XML

Web Services model. Under this model, the parameters are not passed through

browser redirects which are visible to end-users. Instead, parameters are

exchanged directly between the Merchant site and PS servers through SOAP calls.

The general flow of this method is:

1. Merchant system requests for a token from the PS via SOAP

2. PS replies with a token

3. Merchant system uploads the payment information via SOAP using the token

as reference

4. Merchant system performs a browser redirect with the token as the

parameter

The advantages of using this model are:

1. Parameters are not visible on the browser

2. Merchant server is sending the parameters directly to PS thus reducing the

likelihood of 3rd party manipulation

You may use the following URL’s as the Web Service entry point.

Web Service Production URL:

https://gw.dragonpay.ph/DragonPayWebService/MerchantService.asmx

Web Service Test URL:

https://test.dragonpay.ph/DragonPayWebService/MerchantService.asmx

5.2.2.1 Request Parameters

These are the parameters passed by the Merchant via SOAP to request for a token.

Web Method: GetTxnToken

Parameter Data Type Description

merchantId Varchar(20) A unique code assigned to Merchant

password Varchar(20) The password assigned to the Merchant

merchantTxnId Varchar(20) A unique id identifying this specific transaction

from the merchant side

amount Numeric(12,2) The amount to get from the end-user (XXXX.XX)

ccy Char(3) The currency of the amount (see Appendix 1)

description Varchar(128) A brief description of what the payment is for

email Varchar(40) [OPTIONAL] email address of customer

param1 Varchar(80) [OPTIONAL] value that will be posted back to

merchant url when completed

param2 Varchar(80) [OPTIONAL] value that will be posted back to

merchant url when completed

 14

The GetTxnToken() method will return a tokenid string which will be used to refer to

this transaction in future Web Method calls. Note that validity of this tokenid is

limited only to at most one (1) hour. If the value of tokenid is 3-characters or less,

it must be an error code. Refer to Appendix 2 for the list of error codes. Possible

errors are incorrect merchantId or secretKey.

After posting the transaction details via SOAP, the Merchant system performs an

HTTP GET redirect with the following parameters:

Parameter Data Type Description

tokenid Varchar(40) The id returned by GetTxnToken

The code may look like this:

String redirectString =

String.Format("{0}?tokenid={1}",

 paymentSwitchUrl,

 tokenid);

// send browser back to PS

Response.Redirect(redirectString, true);

5.2.2.2 Response Parameters

The response of PS to a payment request from the Merchant using the Web Service

model is just similar to the one for Name-Value Pair. Refer to 5.2.1.2 for details.

 15

5.3 Additional Support Functions

The PS provides some supplementary functions allowing merchants to more tightly

integrate and automate their systems. These functions are available in Name-Value

Pair HTTP GET or POST, and XML Web Service models

5.3.1 Transaction Status Inquiry

The merchant can programmatically inquire the status of a transaction by using this

function.

5.3.1.1 Request Parameters using Name-Value Pair

These are the parameters passed by the Merchant to the PS via name-value pairs to

request for a transaction status. Name-value pairs may be sent using either HTTP

GET or HTTP POST to the MerchantRequest.aspx function.

Parameter Data Type Description

op Varchar(20) The operation to perform (value = GETSTATUS)

merchantid Varchar(20) A unique code assigned to Merchant

merchantpwd Varchar(20) The merchant’s API password

txnid Varchar(40) A unique id identifying this specific transaction

from the merchant side

string message = String.Format("{0}:{1}:{2}",

"GETSTATUS",

merchantId,

Application[“secretkey”].ToString(),

txnId);

An HTTP GET to PS may look something like this:

https://gw.dragonpay.ph/MerchantRequest.aspx?op=GETSTATUS&merchantid=ABC&

merchantpwd=MySecret&txnid=12345678

5.3.1.2 Response Parameters using Name-Value Pair

MerchantRequest.aspx will respond to the inquiry with a plain-text http reply:

Parameter Description

status The result of the payment. Refer to Appendix 3 for codes.

 16

5.3.1.3 Request Parameters using XML Web Service

These are the parameters passed by the Merchant to the PS via SOAP request for a

transaction status.

Web Method: GetTxnStatus

Parameter Data Type Description

merchantId Varchar(20) A unique code assigned to Merchant

merchantPwd Varchar(20) The API password assigned to Merchant

txnId Varchar(40) A unique id identifying this specific transaction

from the merchant side

You may use the following URL’s as the Web Service entry point. (Note that since

this is an alpha documentation, the actual URL’s may change in the future.)

5.3.1.4 Response Parameters using XML Web Service

The GetTxnStatus() method will respond with a single status string:

Parameter Description

status The result of the payment. Refer to Appendix 3 for codes.

For more details on error codes due to FAILURE, or reference numbers for SUCCESS

or PENDING, please access the web-based administrator page.

 17

5.3.1.5 Request Parameters using JSON/REST

These are the parameters passed by the Merchant to the PS via JSON/REST request

for a transaction status. The merchant id and password must be passed to the

endpoint using standard HTTP Basic Auth username and password.

Endpoint: https://gw.dragonpay.ph/api/collect/v1/{refno}

Method: GET

Parameter Data Type Description

refno Varchar(20) A unique Dragonpay refno assigned to the

specific transaction from the merchant side

Alternatively, if you do not have the Dragonpay refno, you may use the merchant-

assigned transaction id using this endpoint.

Endpoint: https://gw.dragonpay.ph/api/collect/v1/txnid/{txnid}

Method: GET

Parameter Data Type Description

txnid Varchar(40) A unique id identifying this specific transaction

from the merchant side

5.3.1.6 Response Parameters using JSON/REST

The endpoint above returns a JSON-formatted record with the following fields:

Parameter Data Type Description

MerchantId Varchar(20) A unique code assigned to Merchant

TxnId Varchar(40) A unique id identifying this specific transaction

from the merchant side

RefDate DateTime Timestamp when transaction was requested

Amount Numeric(12,2) The amount to get from the end-user (XXXX.XX)

Currency Char(3) The currency of the amount (see Appendix 1)

Description Varchar(128) A brief description of what the payment is for

Status Char(1) Transaction status (see Appendix 3)

Email Varchar(40) email address of customer

ProcId Varchar(4) Payment channel selected

SettleDate DateTime Timestamp when transaction was completed

Param1 Varchar(80) [OPTIONAL] value that will be posted back to

merchant url when completed

Param2 Varchar(80) [OPTIONAL] value that will be posted back to

merchant url when completed

If the transaction cannot be located or if the username/password is incorrect, an

HTTP Error Status 404 (not found) will be returned.

 18

5.3.2 Cancellation of Transaction

The merchant can programmatically cancel a pending transaction by using this

function.

5.3.2.1 Request Parameters using Name-Value Pair

These are the parameters passed by the Merchant to the PS via name-value pairs to

request for a transaction cancellation. Name-value pairs may be sent using either

HTTP GET or HTTP POST to the MerchantRequest.aspx function.

Parameter Data Type Description

op Varchar(20) The operation to perform (value = VOID)

merchantid Varchar(20) A unique code assigned to Merchant

merchantpwd Varchar(20) The merchant’s API password

txnid Varchar(40) A unique id identifying this specific transaction

from the merchant side

string message = String.Format("{0}:{1}:{2}",

"VOID",

merchantId,

Application[“secretkey”].ToString(),

txnId);

An HTTP GET to PS may look something like this:

https://gw.dragonpay.ph/MerchantRequest.aspx?op=VOID&merchantid=ABC&

merchantpwd=MySecret&txnid=12345678

5.3.2.2 Response Parameters using Name-Value Pair

MerchantRequest.aspx will respond to the request with a plain-text http reply:

Parameter Description

status Returns zero (0) if successful, else a negative number

 19

5.3.2.3 Request Parameters using XML Web Service

These are the parameters passed by the Merchant to the PS via SOAP request for a

transaction status.

Web Method: CancelTransaction

Parameter Data Type Description

merchantId Varchar(20) A unique code assigned to Merchant

password Varchar(20) The API password assigned to Merchant

merchantTxnId Varchar(40) A unique id identifying this specific transaction

from the merchant side

5.3.2.4 Response Parameters using XML Web Service

The CancelTransaction() method will respond with a single status string:

Parameter Description

status Returns zero (0) if successful, else a negative number

 20

5.3.3 Sending of Billing Information

For additional fraud checking, the merchant can programmatically send the

customer’s billing address by using this function.

5.3.3.1 Request Parameters using XML Web Service

These are the parameters passed by the Merchant to the PS via SOAP request.

Web Method: SendBillingInfo

Parameter Data Type Description

merchantId Varchar(20) A unique code assigned to Merchant

merchantTxnId Varchar(20) Mechant’s unique transaction id

firstName Varchar(60) Firstname of customer

lastName Varchar(60) Lastname of customer

address1 Varchar(120) Street address

address2 Varchar(120) Village, subdivision, etc.

city Varchar(40) City or municipality

state Varchar(40) State or province

country Varchar(2) 2-char ISO country code (ex. PH, US, CA)

zipCode Varchar(12) [OPTIONAL] zip code

telNo Varchar(40) Telephone number

email Varchar(40) Email address of customer

5.3.3.2 Response Parameters using XML Web Service

The SendBillingInfo() method will respond with a single status string:

Parameter Description

status Returns zero (0) if successful, else a negative number

 21

5.3.4 Determining the Assigned Dragonpay Reference No

The merchant can programmatically determine the equivalent Dragonpay reference

no given the merchant’s transaction id by using this function.

5.3.4.1 Request Parameters using XML Web Service

These are the parameters passed by the Merchant to the PS via SOAP request.

Web Method: GetTxnRefNo

Parameter Data Type Description

merchantId Varchar(20) A unique code assigned to Merchant

merchantPwd Varchar(20) The API password assigned to Merchant

txnId Varchar(40) A unique id identifying this specific transaction

from the merchant side

5.3.4.2 Response Parameters using XML Web Service

The GetTxnRefNo() method will respond with a single string representing the

Dragonpay reference no assigned to the transaction.

 22

5.4 Customization of Payment Selection

There may be instances wherein the merchant would want to filter the payment

channels that they want to appear in Dragonpay’s payment selection page, or they

may want to skip the Dragonpay page altogether and go straight to the payment

details for a specific channel. There is support for these features and this section

discusses them in detail.

There are two general forms of customization:

1. Simple control of what payment options appear in Dragonpay’s dropdown list

2. Moving the payment selection process to the merchant side and calling

Dragonpay in the background

5.4.1 Simple Control

With the simple method, the process flow is still essentially the same – merchant

redirects the page to Dragonpay for the buyer to make the payment selection.

However, merchant can control to a certain degree which options appear in the

payment selection list, or merchant can make a pre-selection to a specific channel.

5.4.1.1 Filtering Payment Channels

Dragonpay payment channels are grouped together by type – ex. Online banking,

Over-the-Counter/ATM, etc. Merchants can programmatically instruct Dragonpay

which grouping to show when the user is redirected to the payment gateway by

using the “mode” parameter.

Mode Value Grouping Type

1 Online Banking

2 Over-the-Counter Banking and ATM

4 Over-the-Counter non-Bank

8 E-Wallets (inc. Bitcoins)

16 (reserved internally)

32 PayPal

64 Credit Cards

128 Mobile (Gcash)

256 International OTC

512 Bancnet

1024 Auto Debit Arrangement (ADA)

2048 Cash on Delivery (COD)

“Mode” is a bitmask which can be OR-ed to achieve the result intended. The

following example will only show the online banking options:

https://gw.dragonpay.ph/Pay.aspx?merchantid=ABC&txnid=1234&…&mode=1

Merchants who avail of PayPal or GCash from Dragonpay but do not want them to

appear in the dropdown list, may specify a “mode=7” to display only the basic

alternative payments in the dropdown list.

 23

5.4.1.2 Pre-selecting Payment Channels

Dragonpay has very basic support to allow merchant to go directly to a payment

channel without having to select it from the dropdown list. The following are sample

processor id’s which can be used to go straight to the selection:

Proc Id Name

BAYD Bayad Center

BITC Bitcoins

CC Credit Cards

CEBL Cebuana Lhuillier

CUP China UnionPay

DPAY Dragonpay Prepaid Credits

ECPY ECPay

GCSH Globe Gcash

LBC LBC

PYPL PayPal

MLH M. Lhuillier

RDS Robinsons Dept Store

SMR SM Payment Counters

BOL Bancnet Online (if applicable)

711 7-Eleven (if applicable)

Merchants who want to receive Gcash or PayPal payments may put separate radio

buttons at their checkout page to give user the capability to go straight to that

channel without stopping by the Dragonpay payment selection page by passing a

“procid” parameter.

The following example will direct the buyer to our Gcash payment page from the

merchant’s checkout page:

https://gw.dragonpay.ph/Pay.aspx?merchantid=ABC&txnid=1234&…&procid=GCSH

For PayPal and credit card acceptance, Merchant is required to apply for a separate

merchant id with the respective payment gateways. Contact our Sales for

assistance.

IMPORTANT

Merchants are required to create a separate payment button for Bayad Center in

their checkout page. The integration is exactly the same except you just have to add

the parameter procid=BAYD in the redirect url when this option is selected.

 24

5.4.2 Advanced Control

If the merchant wishes to keep the payment user experience as close to their

checkout page as possible, Dragonpay provides support to perform this to a certain

extent.

The general process flow is as follows:

1. Call the GetAvailableProcessors() web method in MerchantService.asmx to

retrieve a list of all supported payment channel.

2. Merchant dynamically render its checkout page depending on the result set of

GetAvailableProcessors().

3. Depending on which option user selected for checkout, Merchant calls the

Payment Url passing the selected processor id (procid) as parameter.

4. Merchant may either redirect the browser to the specific procid page and let

Dragonpay manage the UI, or perform a background HTTP GET and retrieve

the instructions programmatically as JSON for customized displaying. If you

choose to do the latter, you need to set an http request header variable called

HTTP_X_USERIP and set it to the actual IP address of the user’s browser.

5. When payment is completed, Dragonpay invokes the Merchant’s Postback /

Return Url’s.

5.4.2.1 Determining Available Payment Channels

Depending on various factors, some payment channels may not be available at all

times. Merchants who implement the techniques mentioned in the previous section

to perform payment channel selection at their checkout page, and use the procid

parameter to send the user directly to the payment channel instruction, have to be

careful not to send the user to an inactive channel.

Merchant can query Dragonpay for the available payment channels at a particular

point in time by using the SOAP Web Service GetAvailableProcessors().

Merchants are strongly discouraged from statically listing Dragonpay payment

channels as there are various rules that determine their availability. These include:

1. Some processors are only available on certain days of the week (ex. Not

available on weekends or non-banking days).

2. Some processors are only available between certain times of the day (ex.

Goes down nightly for maintenance).

3. Some processors have limits on the minimum or maximum amount that can

be processed through them.

4. Scheduled or unscheduled system maintenance.

For these reasons, Merchants who want to customize the user experience by moving

the payment selection onto their checkout page have to be aware of all these rules.

Otherwise, customers may encounter problems.

 25

5.4.2.1.1 Request Parameters

To retrieve the list of available processor channels, the main starting point is

GetAvailableProcessors() of MerchantService.asmx.

Web Service Production URL:

https://gw.dragonpay.ph/DragonPayWebService/MerchantService.asmx

Web Service Test URL:

https://test.dragonpay.ph/DragonPayWebService/MerchantService.asmx

Parameter Data Type Description

merchantid Varchar(20) A unique code assigned to Merchant

password Varchar(40) The password associated to the merchantid

amount Numeric(12,2) The amount of the transaction

If an amount value greater than zero is passed, GetAvailableProcessors() will return

a list of channels available for that amount. But if you want to retrieve the full list

regardless of the amount so you can cache it locally and avoid having to calling the

web method for each transaction, you can set amount to a special value of –1000.

5.4.2.1.2 Response Parameters

The web service will return an array of records in an XML/SOAP envelope format.

Each record contains the following fields:

Parameter Data Type Description

procId Varchar(4) A unique code assigned to this processor

shortName Varchar(15) A brief name for this processor. Can be used if

UI space is limited.

longName Varchar(40) A longer, more descriptive name of the

processor. Can be used if UI space allows.

logo Varchar(160) A url pointing to the logo of this procid that

Dragonpay uses

currencies Varchar(80) A comma-delimited list of currencies that this

procid can support.

type Integer Bitmask. Refer to Section 5.4.1.1 for various

meanings

status Char(1) Can be (A)ctive or (I)nactive. As of this writing,

GetAvailableProcessors only return (A)ctive

procid’s.

remarks Varchar(320) This string may be displayed by merchant in its

checkout page to give user more details or

descriptions about what this procid is about.

dayOfWeek Char(7) A string mask corresponding to the 7 days of

the week starting from Sunday and ending

Saturday. If an “X” is in the mask position, that

means the procid is available on that day; else,

it is unavailable and should not be displayed.

startTime Char(5) Starting time when this procid is available to

 26

process (in 24-hr “HH:MM” format)

endTime Char(5) Ending time after which this procId is no longer

available to process.

minAmount Numeric(12,2) The smallest amount this procid can process.

maxAmount Numeric(12,2) The amount over-and-above which procid is not

allowed to process.

MustRedirect Bool This flag tells the Merchant whether a browser

redirect is mandatory.

surcharge Numeric(12,2) The amount added for payments using this

channel

hasAltRefNo Bool Has a 10-digit alternate refno used when paying

Additional Notes:

1. If dayOfWeek is “0XXXXX0”, for example, that means it is not available on

Sundays and Saturdays, but is available from Monday to Friday.

2. It is strongly recommended that Merchant uses the remarks field to display

tips or additional description when the channel is selected. This field will also

inform the user if there are any surcharges that may be applied for using this

channel.

3. If startTime=endTime, then this procId is available 24-hrs a day. If

endTime is “00:00”, but startTime is not “00:00”, then endTime should be

interpreted as the stroke of midnight.

4. The minAmount and maxAmount fields should be implemented as follows –

if (amount >= minAmount && amount < maxAmount) then proceed with this

channel, else do not show this channel. That is not amount <= maxAmount.

5. Merchant must pay attention to the mustRedirect field as it will tell you

whether you really have to redirect the browser to work with this channel, or

whether a background HTTP GET (ex. Wget / cUrl) can be invoked to create a

transaction behind-the-scenes while keeping the browser in its current

location. While most of the processor channels do not require a redirect,

there are some that do.

6. It is recommended that the GetAvailableProcessors() web method be invoked

by a scheduled cron job every 30 mins to every hour with amount = -1000.

While the field values generally will not change, the status can change during

the day for various reasons. For example, a bank partner may have an

unscheduled downtime. If Merchant does not refresh its internal copy of this

list, it may think the channel is still active whereas it has already been

deactivated temporarily (or permanently) on Dragonpay’s side.

 27

5.4.2.2 Creating a Transaction and Retrieving the Instruction

Once a procid is selected, merchant can redirect to the payment gateway url

(Pay.aspx) passing it as a parameter. This can be done in 1 of 2 ways:

1. Perform a browser redirect to Pay.aspx?procid=XXXX as described in Section

5.4.1.2.

2. Invoke Pay.aspx?procid=XXXX in the background programmatically using a

mechanism similar to wget / cUrl. This method allows the user browser to

stay at the merchant payment page with Dragonpay being called from

behind-the-scenes.

Should you wish to take option 1, then proceed with a regular browser redirect as

described in 5.4.1.2. Dragonpay takes over the user interface from there.

But should you decide to take the second option, then you must check the value of

mustRedirect. If mustRedirect is true, then you have to perform a browser

redirect no matter what, similar to option 1. But if mustRedirect is false, you may

programmatically call Pay.aspx in the background. Once completed, you have to

retrieve the Dragonpay reference no that was generated. This can be done using

GetTxnRefNo() as described in 5.3.4.

Given the Dragonpay reference no, you can then retrieve the payment instruction by

simply directing the user to the following url where “XXXXXXXX” is the Dragonpay

reference no.

https://gw.dragonpay.ph/Bank/GetEmailInstruction.aspx?refno=XXXXXXXX

However, if you wish to further control how the instruction is rendered, you have the

option of retrieving it in JSON format by calling:

https://gw.dragonpay.ph/Bank/GetEmailInstruction.aspx?refno=XXXXXXXX&format=json

The structure of the JSON response follows that of the default HTML layout:

Parameter Description

introMsg A 1- to 2- sentence basic description about paying through

this channel. May be blank in some cases.

paymentDetails This is a 2-dimensional array of name-value pairs containing a

field and its corresponding value.

depositInstructions An array of strings containing the deposit instructions

validateInstructions An array of strings containing the instructions on how to

validate a deposit. If this channel does not require validation,

this may be set to null.

confirmInstructions An array of strings containing information about how the

payment for this channel is confirmed.

 28

disclaimer This is the standard Dragonpay disclaimer that merchants are

required to display. Display of these information is mandatory

when using the Advanced Control method.

Below is a sample JSON-formatted response for a GetEmailInstruction request:

{

"introMsg":"",

"paymentDetails":[

 ["Channel","BDO Over-the-Counter Deposit-with-Reference"],

 ["Reference No","LBUAP5W2"],

 ["Account No","1670333890"],

 ["Account Name","Dragonpay Corporation"],

 ["BDO Deposit Ref No","9766412721"],

 ["Amount","PHP 125.00"],

 ["Description","test"],

 ["Deadline","Friday, Jul 1, 2016 - 11:00 PM"]],

"depositInstructions":["Go to any BDO branch and fill-up the blue Cash

Deposit slip with the exact amount due."],

"validateInstructions":null,

"confirmInstructions":["Payments are normally processed within a few

minutes."],

"disclaimer":"Dragonpay is an independent third party payment

processor. Any terms, conditions or warranty for the product or service

that you purchase using our payment facility is strictly between you

and the merchant. Dragonpay shall not be held liable for failure of the

merchant to deliver the said product or service as advertised. You

hereby release and hold harmless Dragonpay from all liability arising

from the payment you are about to make, as all liability shall reside

with the merchant. By using Dragonpay, you agree to be unconditionally

bound by its <a href=\"https://www.dragonpay.ph/terms-and-

conditions\">Terms of Use. This email is only intended for

instructional purposes. It is not a voucher nor receipt of a completed

payment."

}

The merchant is free to render the JSON content in whatever layout he prefers as

long as the disclaimer (or a link to the disclaimer) is provided.

When using the background method to pass control to Dragonpay, the merchant is

required to set two HTTP header variables when calling Pay.aspx. Dragonpay needs

these additional details for fraud checking.

Header Variable Description

HTTP_X_USERIP The ip address of the actual user has to be passed in this

header variable. Since merchant is programmatically

invoking Pay.aspx, Dragonpay cannot see the actual IP

address of the buyer unless the merchant forwards it through

this header variable.

user-agent Merchant must pass on the user-agent field that it retrieved

from the user’s browser and forward it to Dragonpay.

 29

Appendix 1 – Currency Codes

Code Description

PHP Philippine Peso

USD US Dollar

CAD Canadian Dollar

 30

Appendix 2 – Error Codes

Code Description

000 Success

101 Invalid payment gateway id

102 Incorrect secret key

103 Invalid reference number

104 Unauthorized access

105 Invalid token

106 Currency not supported

107 Transaction cancelled

108 Insufficient funds

109 Transaction limit exceeded

110 Error in operation

111 Security Error

112 Invalid parameters

201 Invalid Merchant Id

202 Invalid Merchant Password

 31

Appendix 3 – Status Codes

Code Description

S Success

F Failure

P Pending

U Unknown

R Refund

K Chargeback

V Void

A Authorized

